www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Formel von Sylvester
Formel von Sylvester < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel von Sylvester: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:28 Mo 11.05.2009
Autor: hejaa

Hallo,

ich sitz grad vor meinem Skript zur Wahrscheinlichkeitstheorie und komme mit der Formel von Sylvester nicht klar. Die lautet ja:

$ [mm] P\left( {\bigcup\limits_{i = 1}^n {A_i } } \right) [/mm] = [mm] \sum\limits_{i = 1}^n {\left( { - 1} \right)^{i - 1} \sum\limits_{1 \leqslant k_1 < \cdots < k_i \leqslant n} {P\left( {A_{k_1 } \cap \cdots \cap A_{k_i } } \right)} } [/mm] $

Wie sieht denn diese Summe aus? Besonders die 2. Summe? Ich hab für n=4 durch Rechnen rausbekommen:

[mm] P(A_{1}\cup A_{2}\cup A_{3}\cup A_{4})= P(A_{1}) [/mm] + [mm] P(A_{2}) [/mm] + [mm] P(A_{3}) +P(A_{4}) [/mm] - [mm] P(A_{1}\cap A_{2}) [/mm] -  [mm] P(A_{1}\cap A_{2}\cap A_{3}) [/mm] -  [mm] P(A_{1}\cap A_{2}\cap A_{3}\cap A_{4}) [/mm]

Ist da erstmal so richtig?

lg, hejaaaa

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Formel von Sylvester: Antwort
Status: (Antwort) fertig Status 
Datum: 06:36 Di 12.05.2009
Autor: luis52

Moin hejaaaa,

zunaechst ein [willkommenmr]

Nein, deine Interpretation ist nicht korrekt. Es gilt vielmehr

$ [mm] P(A_{1}\cup A_{2}\cup A_{3}\cup A_{4})= P(A_{1}) [/mm]  +  [mm] P(A_{2}) [/mm]  +  [mm] P(A_{3}) +P(A_{4})$ [/mm]
$- [mm] P(A_{1}\cap A_{2}) -P(A_{1}\cap A_{3})-P(A_{1}\cap A_{4})-P(A_{2}\cap A_{3}) -P(A_{2}\cap A_{4}) -P(A_{3}\cap A_{4})$ [/mm]
$+ [mm] P(A_{1}\cap A_{2}\cap A_{3}) +P(A_{1}\cap A_{2}\cap A_{4})+P(A_{1}\cap A_{3}\cap A_{4})+P(A_{2}\cap A_{3}\cap A_{5})$ [/mm]
[mm] $-P(A_{1}\cap A_{2}\cap A_{3}\cap A_{4}) [/mm] $.

vg Luis    

Bezug
                
Bezug
Formel von Sylvester: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:07 Di 12.05.2009
Autor: hejaa

Danke, luis . Hab meinen Fehler gefunden.

Bezug
        
Bezug
Formel von Sylvester: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Sa 05.05.2012
Autor: mathestudent111

Hallo Leute,

muss diese Aufgabe auch machen.

Ich versteh die rechte seite nicht.
was müsste denn für n=2 stehen?
Danke schonmal =)

[mm] \sum\limits_{i = 1}^n \left( { - 1} \right)^{i - 1} \sum\limits_{1 \leqslant k_1 < \cdots < k_i \leqslant n} {P\left( {A_{k_1 } \cap \cdots \cap A_{k_i } } \right)} [/mm]



Bezug
                
Bezug
Formel von Sylvester: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 So 06.05.2012
Autor: wieschoo

[mm] P\left( {\bigcup\limits_{i = 1}^n {A_i } } \right) = \sum\limits_{i = 1}^n {\left( { - 1} \right)^{i - 1} \sum\limits_{1 \leqslant k_1 < \cdots < k_i \leqslant n} {P\left( {A_{k_1 } \cap \cdots \cap A_{k_i } } \right)} } [/mm]

Für [mm]n=2[/mm] sieht das dann ja so aus

[mm] P\left( {\bigcup\limits_{i = 1}^2 {A_i } } \right) = \sum\limits_{i = 1}^2 {\left( { - 1} \right)^{i - 1} \sum\limits_{1 \leqslant k_1 < \cdots < k_i \leqslant 2} {P\left( {A_{k_1 } \cap \cdots \cap A_{k_i } } \right)} } [/mm]
[mm]={\left( { - 1} \right)^{1 - 1} \sum\limits_{1 \leqslant k_1 \leqslant 2} {P\left( {A_{k_1 } } \right)} } +{\left( { - 1} \right)^{2 - 1} \sum\limits_{1 \leqslant k_1 < k_2 \leqslant 2} {P\left( {A_{k_1 } \cap A_{k_2 } } \right)} }[/mm]
[mm]=P(A_1)+P(A_2) -{ {P\left( {A_{1 } \cap A_{2 } } \right)} }[/mm]

Und das ist genau das gewünschte


[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de