www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Formel von de Moivre
Formel von de Moivre < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel von de Moivre: Tipp, Idee
Status: (Frage) beantwortet Status 
Datum: 19:18 Sa 17.05.2014
Autor: Kruemel1008

Aufgabe
(1) Beweisen Sie mit der Formel von de Moivre
     [mm] cos(3x)=cos(x)*(4cos^{2}(x)-3) [/mm] und [mm] sin(3x)=sinx+(3-4sin^{2}(x)) [/mm] für alle [mm] x\in\IR. [/mm]

(2) Leiten Sie mit der 1. Gleichung in (1) die Gleichungen
     [mm] cos(\bruch{\pi}{6})=\bruch{1}{2}\wurzel{3} [/mm] und [mm] sin(\bruch{\pi}{6})=\bruch{1}{2} [/mm] her. [Hinweis: [mm] cos(3*\bruch{\pi}{6}=0 [/mm] (Warum?)]

(3) Leiten Sie mit der 2. Gleichung in (1) die Gleichungen
     [mm] cos(\bruch{\pi}{3}=\bruch{1}{2} [/mm] und [mm] sin(\bruch{\pi}{3})=\bruch{1}{2}\wurzel{3} [/mm] her. [Hinweis: [mm] sin(3*\bruch{\pi}{3})=0 [/mm] (Warum?)]

Die Formel von de Moivre ist ja:
[mm] (cos(x)+i*sin(x))^{n}=cos(nx)+i*sin(nx) [/mm]

Doch wie wende ich diese auf die Aufgabe an??

LG

        
Bezug
Formel von de Moivre: Antwort
Status: (Antwort) fertig Status 
Datum: 19:53 Sa 17.05.2014
Autor: MathePower

Hallo  Kruemel1008,

> (1) Beweisen Sie mit der Formel von de Moivre
>       [mm]cos(3x)=cos(x)*(4cos^{2}(x)-3)[/mm] und
> [mm]sin(3x)=sinx+(3-4sin^{2}(x))[/mm] für alle [mm]x\in\IR.[/mm]
>  


Das soll wohl hier so lauten:

[mm]sin(3x)=sinx\red{*}(3-4sin^{2}(x))[/mm] für alle [mm]x\in\IR.[/mm]


> (2) Leiten Sie mit der 1. Gleichung in (1) die Gleichungen
>       [mm]cos(\bruch{\pi}{6})=\bruch{1}{2}\wurzel{3}[/mm] und
> [mm]sin(\bruch{\pi}{6})=\bruch{1}{2}[/mm] her. [Hinweis:
> [mm]cos(3*\bruch{\pi}{6}=0[/mm] (Warum?)]
>  
> (3) Leiten Sie mit der 2. Gleichung in (1) die Gleichungen
>       [mm]cos(\bruch{\pi}{3}=\bruch{1}{2}[/mm] und
> [mm]sin(\bruch{\pi}{3})=\bruch{1}{2}\wurzel{3}[/mm] her. [Hinweis:
> [mm]sin(3*\bruch{\pi}{3})=0[/mm] (Warum?)]
>  Die Formel von de Moivre ist ja:
>  [mm](cos(x)+i*sin(x))^{n}=cos(nx)+i*sin(nx)[/mm]
>  
> Doch wie wende ich diese auf die Aufgabe an??
>  


Nun, linke Seite der Gleichung für n=3 ausmultiplizieren.
Nach Real- und Imaginärteil sortieren unjd ggf.
Additionstheioreme verwenden.
Schliesslich mit rechter Seite der Gleichung vergleichen.-


> LG


Gruss
MathePower

Bezug
                
Bezug
Formel von de Moivre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:54 So 18.05.2014
Autor: Kruemel1008

Verstehe ich nicht ganz, also ich hab jetzt [mm] (cos(x)+1*sin(x))^{3} [/mm] ausmultilizuert und auch nach ewiger rechnerei das ergebnis cos(3x)+i*sin(3x) rausbekommen.
Damit habe ich aber noch nur diese Moivre Formel bewiesen, wie hilft mir das denn bei meiner Aufgabe weiter???

Bezug
                        
Bezug
Formel von de Moivre: Antwort
Status: (Antwort) fertig Status 
Datum: 17:38 So 18.05.2014
Autor: MathePower

Hallo Kruemel1008,

> Verstehe ich nicht ganz, also ich hab jetzt
> [mm](cos(x)+1*sin(x))^{3}[/mm] ausmultilizuert und auch nach ewiger
> rechnerei das ergebnis cos(3x)+i*sin(3x) rausbekommen.


Poste dazu die durchgeführten Rechenschritte.


>  Damit habe ich aber noch nur diese Moivre Formel bewiesen,
> wie hilft mir das denn bei meiner Aufgabe weiter???


Gruss
MathePower

Bezug
                                
Bezug
Formel von de Moivre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:53 So 18.05.2014
Autor: Kruemel1008

(cos(x)+i*sin(x))(cos(x)+i*sin(x))(cos(x)+i*sin(x))
[mm] =(cos^{2}(x)+2isin(x)cos(x)-sin^{2}(x))(cos(x)+i*sin(x)) [/mm]
[mm] =cos^{3}(x)+3isin(x)cos^{2}(x)-3sin^{2}(x)cos(x)-isin^{3}(x) [/mm]
[mm] =cos^{3}(x)+3isin(x)cos^{2}(x)-3(cos(x)-cos^{3}(x))-isin^{3}(x) [/mm]
[mm] =cos^{3}(x)+3isin(x)cos^{2}(x)-3cos(x)+3cos^{3}(x)-isin^{3}(x) [/mm]
[mm] =4cos^{3}(x)+3isin(x)cos^{2}(x)-3cos(x)-isin^{3}(x) [/mm]
[mm] =4cos^{3}(x)+3i(sin(x)-sin^{3}(x))-3cos(x)-isin^{3}(x) [/mm]
[mm] =4cos^{3}(x)+3isin(x)-3isin^{3}(x)-3cos(x)-isin^{3}(x) [/mm]
[mm] =4cos^{3}(x)-3cos(x)-4isin^{3}(x)+3isin^{x} [/mm]
=cos(3x)+i*sin(3x)

Ich hoffe da ist kein Tippfehler drinnen ... habs zig mal gerechnet um auf dieses Ergebnis zu kommen aber irgendwie hilfts mir so gar nicht weiter ...

Bezug
                                        
Bezug
Formel von de Moivre: Antwort
Status: (Antwort) fertig Status 
Datum: 17:59 So 18.05.2014
Autor: MathePower

Hallo Kruemel1008,

> (cos(x)+i*sin(x))(cos(x)+i*sin(x))(cos(x)+i*sin(x))
>  [mm]=(cos^{2}(x)+2isin(x)cos(x)-sin^{2}(x))(cos(x)+i*sin(x))[/mm]
>  
> [mm]=cos^{3}(x)+3isin(x)cos^{2}(x)-3sin^{2}(x)cos(x)-isin^{3}(x)[/mm]
>  
> [mm]=cos^{3}(x)+3isin(x)cos^{2}(x)-3(cos(x)-cos^{3}(x))-isin^{3}(x)[/mm]
>  
> [mm]=cos^{3}(x)+3isin(x)cos^{2}(x)-3cos(x)+3cos^{3}(x)-isin^{3}(x)[/mm]
>  [mm]=4cos^{3}(x)+3isin(x)cos^{2}(x)-3cos(x)-isin^{3}(x)[/mm]
>  [mm]=4cos^{3}(x)+3i(sin(x)-sin^{3}(x))-3cos(x)-isin^{3}(x)[/mm]
>  [mm]=4cos^{3}(x)+3isin(x)-3isin^{3}(x)-3cos(x)-isin^{3}(x)[/mm]
>  [mm]=4cos^{3}(x)-3cos(x)-4isin^{3}(x)+3isin^{x}[/mm]
>  =cos(3x)+i*sin(3x)
>  


Die Behauptung in der Teilaufgabe a) hast Du damit gezeigt. [ok]


> Ich hoffe da ist kein Tippfehler drinnen ... habs zig mal
> gerechnet um auf dieses Ergebnis zu kommen aber irgendwie
> hilfts mir so gar nicht weiter ...


Verwende die Hinweise in den Teilaufgaben b) un c).


Gruss
MathePower

Bezug
                                                
Bezug
Formel von de Moivre: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:02 So 18.05.2014
Autor: Kruemel1008

Aber ich soll doch dieses hier beweisen :
$ [mm] cos(3x)=cos(x)\cdot{}(4cos^{2}(x)-3) [/mm] $ und $ [mm] sin(3x)=sinx+(3-4sin^{2}(x)) [/mm] $ für alle $ [mm] x\in\IR. [/mm] $
????

Bezug
                                                        
Bezug
Formel von de Moivre: Antwort
Status: (Antwort) fertig Status 
Datum: 18:24 So 18.05.2014
Autor: leduart

Hallo
du hast doch jetz nach dem Ausmultiplizieren und der formel von Moivre

$cos(3*x)+isin(3*x) [mm] =4cos^{3}(x)-3cos(x)-4isin^{3}(x)+3isin^{x} [/mm] $
wenn du jetzt die realteile links = Realteilrechts setzt und rechts cos(x) ausklammerst hast du was du wolltest. dasselbe mit den Imaginärteilen.
Gruß leduart

Bezug
                                                                
Bezug
Formel von de Moivre: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:07 So 18.05.2014
Autor: Kruemel1008

Aaaahhh, ok, danke :D ... Ich hab jetzt aus der (ii) die erste Gleichung bewiesen, soch wie beweise ich die zweite, also [mm] sin(\bruch{\pi}{6})=\bruch{1}{2} [/mm] mit der ersten Gleichung aus (i) also mit [mm] cos(3x)=cos(x)*(4cos^{2}(x)-3) [/mm] ???

Bezug
                                                                        
Bezug
Formel von de Moivre: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:56 So 18.05.2014
Autor: Kruemel1008

Aaah, hat sich erledigt, habs hinbekommen :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de