www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Abbildungen" - Formel zur Lösungen von LGS
Formel zur Lösungen von LGS < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formel zur Lösungen von LGS: Tipp
Status: (Frage) beantwortet Status 
Datum: 01:02 Mo 07.01.2008
Autor: jaruleking

Aufgabe
Sei A [mm] \in [/mm] K^nxn eine Matrix mit Spalten [mm] a_1 [/mm] ,...., [mm] a_n [/mm] mit [mm] a_1 \wedge [/mm] .... [mm] \wedge a_n \not= [/mm] 0, und sei b [mm] \in [/mm] K^(nx1) ein Spaltenvektor. Zeigen Sie, dass für den Spaltenvektor x [mm] \in [/mm] K^(nx1) mit Ax=b gilt:

[mm] x_i [/mm] = [mm] \bruch{a_1 \wedge .... \wedge a_{i-1} \wedge b \wedge a_{i+1} \wedge .... \wedge a_n}{a_1 \wedge .... \wedge a_n} [/mm]  , [mm] \forall [/mm] i=1,....,n

Hinweis: Benutzen Sie die zu a adjungierte Matrix.

Hallo, ich habe irgendwie keine ahnung, wie ich diese Aufgabe anpacken soll bzw. anfangen soll und hoffe hier auf hilfe.

danke und gruß

        
Bezug
Formel zur Lösungen von LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:07 Mo 07.01.2008
Autor: cutter

Was heisst
[mm] x_i=\frac{a_1\wedge a_2 \wedge etc} [/mm] bei euch ?....Ich versteh das [mm] \wedge [/mm] gerade nicht ;)

Bezug
                
Bezug
Formel zur Lösungen von LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:40 Mo 07.01.2008
Autor: jaruleking

Das ist das Dachprodukt, bzw. die Multiplikation von Det.

So habe ich es zumindest verstanden.

Bezug
        
Bezug
Formel zur Lösungen von LGS: Tipp
Status: (Antwort) fertig Status 
Datum: 07:42 Mo 07.01.2008
Autor: zahllos

Schau mal unter Cramerscher Regel nach, da findest Du genau die von Dir gesuchte Formel!

Bezug
                
Bezug
Formel zur Lösungen von LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 01:26 Di 08.01.2008
Autor: jaruleking

Hi, das mit der Cramerscher Regel ist richtig, aber ich finde nirgendwo eine herleitung dazu, nur aufgaben, wo die formel angewendet wird, mehr nicht.

brauch aber ja die herleitung.

gruß

Bezug
                        
Bezug
Formel zur Lösungen von LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 23:00 Di 08.01.2008
Autor: zahllos

Der Beweis geht in groben Zügen so:
Sei A eine nxn-Matrix und [mm] A_{ij} [/mm]  diejenige Matrix, die entsteht,
wenn man [mm] a_{ij} [/mm] = 1 setzt und alle anderen Elemente in Zeile i
und Spalte j gleich 0 setzt.  
Ferner sei [mm] {A'}_{ij} [/mm] diejenige Matrix, die aus A durch Streichung
der Zeile i und der Spalte j entsteht.

Dann ist:   detA = [mm] \summe_{k=1}^{n} (-1)^{i+j}a_{ij}detA'_{ij} [/mm]  

und          [mm] A^{-1} [/mm] hat die Koeffizienten:   [mm] \bruch{detA_{ji}}{detA} [/mm]

(Reihenfolge von i und j beachten!)



Wegen  [mm] x=A^{-1}b [/mm] folgt:

[mm] x_i=\summe_{j=1}^{n}b_j\bruch{detA_{ji}}{detA} [/mm]

  [mm] =\bruch{det(a_1,..,a_{i-1},b,a_{i+1},..,a_n)}{detA} [/mm]

Das ist genau die Formel, die Du beweisen sollst!

(In der Praxis nimmt man die Cramersche Regel nie zur Berechnung der Lösung eines linearen Gleichungssystems, da sie die Berechung von n+1 Determinanten der Größe nxn erfordert, d.h. ca. (n+1)! Operationen! Aber für theoretische Zwecke ist sie interessant)

Bezug
                                
Bezug
Formel zur Lösungen von LGS: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:24 Di 08.01.2008
Autor: jaruleking

HI danke erstmal. ich habe die formel auch mittlerweile in wikipedia gefunden. da leiten die es bisschen bildlicher her, als deins :-)
aber da habe ich trotzdem noch paar probleme mit.

Für diesen Beweis verwendet man eine Matrix [mm] X_i, [/mm] die entsteht, indem man die i-te Spalte der Einheitsmatrix durch den Lösungsvektor x des Gleichungssystems Ax = b ersetzt. So sieht [mm] X_2 [/mm] für ein Gleichungssystem mit vier Gleichungen folgendermaßen aus:

[mm] X_2=\pmat{ 1 & x_1 & 0 & 0 \\ 0 & x_2 & 0 & 0 \\ 0 & x_3 & 1 & 0 \\ 0 & x_4 & 0 & 1} [/mm]

Hier schon mal gleich eine frage, wieso darf man das machen?

So dann hatte man eine Matrix [mm] A\in K^{4x4} [/mm]

Und [mm] A*X_2 [/mm] ergab durch Matrizenmultiplikation und A*X=b

[mm] A*X_2= \pmat{ a_{11} & b_1 & a_{13} & a_{14} \\ a_{21} & b_2 & a_{23} & a_{24} \\ a_{31} & b_3 & a_{33} & a_{34} \\ a_{41} & b_4 & a_{43} & a_{44}} [/mm] = [mm] A_2 [/mm]

So wie die Matrix zustande kam, habe ich noch verstanden, war ja nur die Multiplikation und dann b eingesetzt. Aber was jetzt kommt versteh ich wieder nicht.

Da zusätzlich gilt det [mm] (X_i)= x_i [/mm] gilt, folt mit der Produktregel für Det.

det (A) * det [mm] (X_i) [/mm] = det [mm] (A_i) [/mm]
det (A) * [mm] x_i [/mm] = det [mm] (A_i) [/mm]
[mm] x_i [/mm] = det [mm] (A_i)/(det [/mm] (A))

So also nochmal, wieso gilt dieses hier: det [mm] (X_i)= x_i [/mm] ich habe dazu nichts in meinem Skript gefunden.

Und wieso gilt dieses hier: det (A) * det [mm] (X_i) [/mm] = det [mm] (A_i) [/mm]

Und dann noch zuletzt, was hat das lettzte mit den Matrizen zu tun, die man am anfang berechnet hat. Wo raus kam [mm] A*X_2 [/mm] = [mm] A_2 [/mm]

Also ich weiß, das waren jetzt doch einige Fragen, aber will die Aufgabe gerne gut verstehen und würde auch sehr danken, wenn mir jemand das mal erläutern könnte. Die Schritte wo ich nachgefragt habe.

danke im voraus

Bezug
                                        
Bezug
Formel zur Lösungen von LGS: Antwort
Status: (Antwort) fertig Status 
Datum: 23:37 Di 08.01.2008
Autor: zahllos

Hallo,

die Matrix [mm] X_2 [/mm] wird hier einfach so definiert
(das kann man machen, ob es sinnvoll ist, zeigt sich noch).
Dann wird [mm] A_2 [/mm] berechnet, das ist auch noch nachvollziehbar.

Jetzt wird die Determinante von [mm] X_2 [/mm] berechnet, indem man nach der ersten Zeile entwickelt, man erhält: [mm] 1\cdot x_2\cdot1 [/mm]
Dann wird die Determinante von [mm] A\cdot X_2 [/mm] berechnet. Determinanten sind multiplikativ, deshalb gilt diese Produktregel.
Zum Schluß löst man noch nach [mm] x_2 [/mm] auf.

Wenn man dies für jeden Index i=1,..,n macht, ist man fertig.


Bezug
                                                
Bezug
Formel zur Lösungen von LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:42 Di 08.01.2008
Autor: jaruleking

ok danke, jetzt ist es klarer geworden.

gruß

Bezug
                                                        
Bezug
Formel zur Lösungen von LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Do 10.01.2008
Autor: ebarni

Hallo jaruleking,

wenn Deine Frage beantwortet ist, schließe ich Deine Frage, damit sie nicht unnötig offen im System "herumschwirrt".

Viele Grüße ;-)

Andreas

Bezug
                                                                
Bezug
Formel zur Lösungen von LGS: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 21:10 Do 10.01.2008
Autor: jaruleking

ja klar,ich habe jetzt alles verstanden :-)

danke und gruß

Bezug
                                                                        
Bezug
Formel zur Lösungen von LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:11 Do 10.01.2008
Autor: jaruleking

sorry, das sollte eine mitteilung sein und keine frage.

gruß

Bezug
                                                                        
Bezug
Formel zur Lösungen von LGS: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:23 Do 10.01.2008
Autor: ebarni

Hallo jaruleking,

dann ist das jetzt die Antwort ;-)

Viele Grüße

Andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de