www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathe Klassen 8-10" - Formeln vereinfachen
Formeln vereinfachen < Klassen 8-10 < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formeln vereinfachen: Rechenweg
Status: (Frage) beantwortet Status 
Datum: 14:39 Fr 22.06.2007
Autor: Flowers28

Aufgabe
(2a/2a+b - 4a²/4a²+4ab+b²)*(2a/4a²-b² + 1/b-2a)hoch-1 + 8a²/2a+b

Unser Lehrer möchte nun den Rechenweg wissen, aber ich komme nur soweit, dass ich bei den Brüchen einige Zahlen wegkürtzen kann, weiter nicht. Als Ergenbnis soll dann 2a herauskommen, auch das hat uns unser Lehrer schon gesagt.

        
Bezug
Formeln vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Fr 22.06.2007
Autor: M.Rex

Hallo.

Meinst du folgendes?


[mm] (\bruch{2a}{2a+b}-\bruch{4a²}{4a²+4ab+b²})*(\bruch{2a}{4a²-b²}+\bruch{1}{b-2a})^{-1}+\bruch{8a²}{2a+b} [/mm]

>  Unser Lehrer möchte nun den Rechenweg wissen, aber ich
> komme nur soweit, dass ich bei den Brüchen einige Zahlen
> wegkürtzen kann, weiter nicht.

Dann schreib das Zwischenergebnis mal hin!!

Als Ergenbnis soll dann 2a

> herauskommen, auch das hat uns unser Lehrer schon gesagt.

Marius

Bezug
                
Bezug
Formeln vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:54 Fr 22.06.2007
Autor: Flowers28

Aufgabe
(a/a+b - a²/a²+4ab+b²)*(2a²-b²/a + b-2a/1)+ 4a²/a+b

Die Brüche sind in zwei Klammern wie es da steht und bei der Oroginalaufgabe war das hoch minus eins nach der gesamten zweiten Klammer also dreht sich doch alles in der Klammer um und das hoch -1 ist weg oder?
Und ab hier komme ich auch schon nicht weiter, weil ich nicht weiß was ich noch kürtzen soll oder was ich zusammenfassen kann.

Bezug
                        
Bezug
Formeln vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Fr 22.06.2007
Autor: tobbi

Hallo,

da die Darstellung von Marius zum richtigen Ergebnis führt, gehe ich mal davon aus, dass diese stimmt.

[mm] (\bruch{2a}{2a+b}-\bruch{4a²}{4a²+4ab+b²})\cdot{}(\bruch{2a}{4a²-b²}+\bruch{1}{b-2a})^{-1}+\bruch{8a²}{2a+b} [/mm]

Da du leider kein Zwischenergebnis gepostet hast, hier nur einige Hinweise zur Bearbeitung der Aufgabe:
- Beachte beim Kürzen, dass du in einer Summe alle Sumanden kürzt! (Beispiel: [mm] \bruch{2}{4d+2f}\not=\bruch{1}{2d+2f} [/mm] sondern [mm] \bruch{2}{4d+2f}=\bruch{1}{2d+f}. [/mm]
- Schau dir mal einige Teilterme an, ob du dort nicht vielleicht die binomischen Formeln anwenden kannst.
- [mm] (\bruch{1}{d}+\bruch{1}{e})^{-1}\not=d+e!!! [/mm]

Normalerweise sollte dich dies auf den richtigen Weg bringen, falls nicht, poste am besten deinen Rechenweg, dann schauen wir, wo der Fehler liegt.

Schöne Grüße
Tobbi

Bezug
                                
Bezug
Formeln vereinfachen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Fr 22.06.2007
Autor: Flowers28

Aufgabe
  (a/a+b - a²/a²+4ab+b²)*(2a²-b²/a + b-2a/1)+ 4a²/a+b

Das ist mein einziger Teil des Rechenweges. Ist das bis dahin denn richtig gekürzt? Ich dachte in Summen darf man nicht reinkürzen? Die Brüche, die in der Klammer mit hoch -1 standen musste ich doch nur umdrehen oder?
Von hier an komme ich jetzt nicht weiter, ich weiß zwar ,dass da noch eine Binomische Formel drin ist, aber die weiß ich auch nicht wie ich die kleiner bekomme , weil da ja 4ab statt 2ab steht.

Bezug
                                        
Bezug
Formeln vereinfachen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:29 Fr 22.06.2007
Autor: M.Rex

Hallo



>  (a/a+b - a²/a²+4ab+b²)*(2a²-b²/a + b-2a/1)+ 4a²/a+b
>  Das ist mein einziger Teil des Rechenweges. Ist das bis
> dahin denn richtig gekürzt? Ich dachte in Summen darf man
> nicht reinkürzen? Die Brüche, die in der Klammer mit hoch
> -1 standen musste ich doch nur umdrehen oder?


Tu uns den Gefallen, und setz die Formeln.

Also:

$ [mm] (\bruch{2a}{2a+b}-\bruch{4a²}{4a²+4ab+b²})\cdot{}(\bruch{2a}{4a²-b²}+\bruch{1}{b-2a})^{-1}+\bruch{8a²}{2a+b} [/mm] $
[mm] =(\bruch{2a}{2a+b}-\bruch{4a²}{(2a+b)²})*(\bruch{2a}{(2a+b)(2a-b)}+\bruch{1}{-(2a-b)})^{-1}+\bruch{8a²}{2a+b} [/mm]
Gleichnamig machen
[mm] =(\bruch{2a(2a+b)}{(2a+b)²}-\bruch{4a²}{(2a+b)²})*(\bruch{-2a}{-(2a+b)(2a-b)}+\bruch{1(2a+b)}{-(2a-b)(2a+b)})^{-1}+\bruch{8a²}{2a+b} [/mm]
Addieren
[mm] =(\bruch{2a(2a+b)-4a²}{(2a+b)²})*(\bruch{-2a*1(2a+b)}{-(2a-b)(2a+b)})^{-1}+\bruch{8a²}{2a+b} [/mm]
Vereinfachen
[mm] =\bruch{4b}{(2a+b)²}*(\bruch{-4a²-2ab}{-(2a-b)(2a+b)})^{-1}+\bruch{8a²}{2a+b} [/mm]
"Bruch drehen" bei dem ^{-1} steht
[mm] =\bruch{4b}{(2a+b)²}*\bruch{-(2a-b)(2a+b)}{-4a²-2ab}+\bruch{8a²}{2a+b} [/mm]
[mm] =\bruch{4b}{(2a+b)²}*\bruch{-(2a-b)(2a+b)}{-2a(2a+b)}+\bruch{8a²}{2a+b} [/mm]

Jetzt bist du erstmal wieder dran

Marius

Bezug
        
Bezug
Formeln vereinfachen: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:52 Fr 22.06.2007
Autor: tobbi

Hallo Flowers,

da man den von dir angegebenen Term kaum lesen kann, versuche ich den mal ordentlich darzustellen:

[mm] (\bruch{2a}{2(a+b)}-\bruch{4a^{2}}{4a^{2}+4ab+b^{2}} [/mm] ) [mm] \cdot (\bruch{2a}{4(a^{2}-b^{2})}+\bruch{1}{b-2a})^{-1}+\bruch{8a^{2}}{2(a+b)} [/mm]

Ist das, was du meinstest, oder habe ich einige der Brüche falsch interpretiert bzw. Klammern zuviel oder zu wenig gesetzt??

Schöne Grüße
Tobbi

Bezug
                
Bezug
Formeln vereinfachen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 Fr 22.06.2007
Autor: Flowers28

Ja Tobbi so war die Aufgabe richtig, aber ich weiß0 nicht wie ich das so schreiben kann! Tut mir leid.

Bezug
                        
Bezug
Formeln vereinfachen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:12 Fr 22.06.2007
Autor: espritgirl

Hey flowers28 [winken],

Hier kannst du mal nachlesen, wie du die mathematischen Formeln in einem Artikel angeben kannst ;-)

Außerdem hast du die Möglichkeit beim Schreiben eines Artikels auf diese Formeln zurück zu greifen (unterhalb deines Schreibfensters).
Dafür musst du einfach nur das anklicken, was du haben möchtest und kannst dann den Code in das Schreibfenster kopieren.

Liebe Grüße,

Sarah :-)

Bezug
                        
Bezug
Formeln vereinfachen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:14 Fr 22.06.2007
Autor: M.Rex

Hallo

Ansonsten kannst du auch auf die Formeln klicken, dann siehst du den Quelltext für die gesetzte Formel.

Marius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathe Klassen 8-10"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de