www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Deutsch" - Formulierung :-)
Formulierung :-) < Deutsch < Sprachen < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Deutsch"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Formulierung :-): ich bins wieder
Status: (Frage) beantwortet Status 
Datum: 12:57 So 29.07.2007
Autor: viktory_hh

Aufgabe
Hallo an alle, hi espritgirl ;-)

Mir gefällt's schon wieder nicht, was ich da so schreibe und ich möchte deswegen euch wieder um einen Rat bitten?
--------------------
Dieses Problem entpricht bis auf die Bedingung $y(1)=1$ der Minimierung
des Reyleigh-Quotienten, dessen L"osung der kleinste Eigenwert und der
zugeh"orige Eigenvektor sind. Das suggeriert, dass die optimale L"osung des
TRS-Problems aus einem Eigenpaar von [mm] $B_\alpha$ [/mm] berechnet werden kann,
vorausgesetzt die erforderliche Normalisierung des Eigenvektors durchf"uhrbar
ist. Die Normalisierung des Eigenvektors ist gerade in solchen Situationen nicht
m"oglich, wenn der "'harte Fall"' eintritt. M. Rojas zeigt, dass es dann nur
f"ur einen bestimmten [mm] $\alpha$-Wert [/mm] einen Eigenvektor mit der ersten
Komponente ungleich Null gibt. Diese Relation ist f"ur sp"atere Betrachtungen
wichtig, denn sie stellt eine Verbindung zwischen dem "'harten Fall"' f"ur
TRS-Probleme und SDP-Programmen her.
---------------------
Besonders der letzte Satz, ist irgendwie nicht eindeutig. Dort möchte ich sagen, dass es eine Verbindung zwischen dem harten Fall für das TRS und dem
harten Fall für SDP darstellt.

Ich bin für jede Hilfe und Rat dankbar.

bis dann

Danke

        
Bezug
Formulierung :-): Antwort
Status: (Antwort) fertig Status 
Datum: 14:01 So 29.07.2007
Autor: espritgirl

Hey viktory_hh [winken]

Schön, dass du eine neue Diskussion aufgemacht hast, die alte war ja schon sehr lang ;-)

>  Dieses Problem entpricht bis auf die Bedingung [mm]y(1)=1[/mm]
> der Minimierung des Reyleigh-Quotienten, dessen L"osung der
> kleinste Eigenwert sowie der zugeh"orige Eigenvektor
> ist. Dadurch wird suggeriert ,
> dass die optimale L"osung des TRS-Problems aus einem Eigenpaar von > [mm]B_\alpha[/mm] berechnet werden kann,
> vorausgesetzt, dass die erforderliche Normalisierung
> des Eigenvektors durchf"uhrbar ist. Die Normalisierung des
> Eigenvektors ist gerade in solchen Situationen nicht
>  m"oglich, wenn der "'harte Fall"' eintritt. M. Rojas
> zeigt, dass es dann nur f"ur einen bestimmten [mm]\alpha[/mm]-Wert > einen Eigenvektor mit der ersten Komponente ungleich Null
> ergibt. Diese Relation ist f"ur sp"atere Betrachtungen
> wichtig,da sie eine Verbindung zwischen dem
> "'harten Fall"' f"ur
> TRS-Probleme und SDP-Programmen darstellt .


>  Besonders der letzte Satz, ist irgendwie nicht eindeutig.
> Dort möchte ich sagen, dass es eine Verbindung zwischen dem
> harten Fall für das TRS und dem
>  harten Fall für SDP darstellt.

Ich finde, man kann es gut nachvoll ziehen! Ich habe dennoch ein paar Kleinigkeiten geändert, die sich nach meinem Sprachgefühl ein bisschen besser anhören.

Ansonsten fand ich deine Ausführung sprachlich gesehen (vom Inhalt habe ich ja mal wieder keine Ahnung ;-) ) vollkommen okay!


liebe Grüße,

Sarah :-)

Bezug
        
Bezug
Formulierung :-): Meine Version
Status: (Antwort) fertig Status 
Datum: 10:31 Mo 30.07.2007
Autor: Analytiker

Hi Victory,
Hi Sarah ([winken]),

da ist ja mal wieder die "lustige" Formulierungsabteilung des Matheraums zusammengekommen *smile*! Ja, find ich auch gut das Victory einen neuen Thread aufgemacht hat. Ich wollte noch meine Version dazustellen, dann kann sich Victory ein besseres Bild machen, da ich seine Formulierung noch nicht perfekt finde... (Änderungen sind grün markiert!

> Dieses Problem entpricht bis auf die Bedingung [mm]y(1)=1[/mm] der
> Minimierung
> des Reyleigh-Quotienten, dessen L"osung der kleinste
> Eigenwert und der
> zugeh"orige Eigenvektor sind. Dieser Sachverhalt wird dadurch suggeriert, dass die
> optimale L"osung des
> TRS-Problems aus einem Eigenpaar von [mm]B_\alpha[/mm] berechnet
> werden kann,
> vorausgesetzt wird, dass die erforderliche Normalisierung des
> Eigenvektors durchf"uhrbar
> ist. Die Normalisierung des Eigenvektors ist gerade in
> solchen Situationen nicht
>  m"oglich, wenn der "'harte Fall"' eintritt. M. Rojas
> zeigt, dass es dann nur
> f"ur einen bestimmten [mm]\alpha[/mm]-Wert einen Eigenvektor mit der
> ersten
> Komponente ungleich Null gibt. Diese Relation ist f"ur
> sp"atere Betrachtungen
> relevant , denn sie stellt eine Verbindung zwischen dem
> "'harten Fall"' f"ur
> TRS-Probleme und dem für SDP-Programme her.

Liebe Grüße
Analytiker
[lehrer]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Deutsch"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de