www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - FourierReihe Phasenspektrum
FourierReihe Phasenspektrum < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

FourierReihe Phasenspektrum: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 19:12 Fr 02.02.2007
Autor: Gwin

Aufgabe
durch periodische fortsetzung der im intervall [mm] [1-\pi;1+\pi[ [/mm] definierten funktion
t [mm] \mapsto t^{2}-2t-3 [/mm]
sei eine funktion f gegeben.

a) berechnen sie durch reelle rechnung zu f die fourier-koeffizienten [mm] a_{0} [/mm] und [mm] a_{n}. [/mm]
b) bestimmen sie die darstellung der funktion durch due fourier-reihe.
c) berechnen sie relle amplituden und phasen und zeichen sie die beiden zugehörigen spektren für 0 [mm] \le [/mm] n [mm] \le [/mm] 10.

hinweis: [mm] b_{n} [/mm] = [mm] (-1)^{n}\bruch{4}{n^{2}}*sin(n) [/mm]

hallo zusammen...

die aufgabe bis auf den c teil habe ich lösen können...
bei teilaufgabe c) habe ich beim phasenspektrum ein problem...

undzwar:
ich habe folgende formel für das phasenspektrum: [mm] \phi_{n}=arctan(\bruch{a_{n}}{b_{n}}) [/mm]

--> [mm] \phi_{n}=arctan(\bruch{(-1)^{n}\bruch{4}{n^{2}}*cos(n)}{(-1)^{n}\bruch{4}{n^{2}}*sin(n)}) [/mm]

hier weiß ich nicht wie ich mit dem [mm] (-1)^{n} [/mm] hier umgehen soll...

erste möglichkeit: [mm] \phi_{n}=arctan(cot(n)) [/mm]

zweite möglichkeit: [mm] \phi_{n}=arctan(\bruch{(-1)^{n}}{(-1)^{n}}cot(n)) [/mm]

dritte möglichkeit: garnicht vereinfachen...

wenn ich zweite oder dritte möglichkeit nehmen muß was mache ich mit dem wechselnden vorzeichen? muß ich für jedes einzelnes n eine quadrantenbetrachtung machen oder kann ich einfach sagen bei jeden ungeraden n noch [mm] \phi_{n}-\pi [/mm] rechen?

ich hoffe ich habe es einigermaßen verständlich geschrieben :)...

vielen dank schon mal im vorraus...

mfg Gwin



        
Bezug
FourierReihe Phasenspektrum: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 So 04.02.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de