www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Fourierkoeffizienten/Polynom
Fourierkoeffizienten/Polynom < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierkoeffizienten/Polynom: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:04 Do 23.09.2010
Autor: inseljohn

Aufgabe
Zeichnen Sie die Funktion f(t)=3t für [mm] t\in[-2,2] [/mm] und entscheiden Sie, ob es sich um eine gerade oder ungerade Funktion handelt. Berechnen Sie eine Formeld für die Fourierkoeffizienten der 8-periodischen Fortsetzung dieser Funktion und geben Sie das Fourierpolynom F4 explizit an


Hallo Leute,

hab grad mal versucht diese Aufgabe zu rechnen. Aus der Zeichnung sehe ich, dass es sich um eine ungerade Funktion handelt oder?

So, hab dann hiermit mal so n bisschen rumgerechnet:

[mm] bk=1/2\integral_{0}^{4} 3t*sin(\bruch{\pi*kt}{4})*dt [/mm]

Habe dann dort als Formel für die Fourierkoeffizienten folgendes raus
[mm] -\bruch{24}{\pi*k}*cos(\pi*k) [/mm]

Kann das jemand bestätigen? Wäre wirklich sehr dankbar...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Fourierkoeffizienten/Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:30 Do 23.09.2010
Autor: angela.h.b.


> Zeichnen Sie die Funktion f(t)=3t für [mm]T\in[-2,2][/mm] und
> entscheiden Sie, ob es sich um eine gerade oder ungerade
> Funktion handelt. Berechnen Sie eine Formeld für die
> Fourierkoeffizienten der 8-periodischen Fortsetzung dieser
> Funktion

Hallo,

ich hab' hier ein Problem: was ist die 8-periodische Fortsetzung der Funktion?
"Periodische Fortsetzung" könnte ich verstehen.

Gruß v. Angela


Bezug
                
Bezug
Fourierkoeffizienten/Polynom: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:48 Do 23.09.2010
Autor: inseljohn

Hallo,

also genau so lautet die Aufgabenstellung.
Aber damit macht man eigentlich nicht viel.
Damit berechnet man sein T.
Also T= 8/2. Damit ergibt sich T=4

Was genau das bedeutet, weiß ich leider nicht =)
Aber müsste ziemlich sicher stimmen.



Bezug
        
Bezug
Fourierkoeffizienten/Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Do 23.09.2010
Autor: Marcel

Hallo,

> Zeichnen Sie die Funktion f(t)=3t für [mm]\red{T}\in[-2,2][/mm]

[mm] $$\blue{t} \in [/mm] [-2,2]$$

> und
> entscheiden Sie, ob es sich um eine gerade oder ungerade
> Funktion handelt. Berechnen Sie eine Formeld für die
> Fourierkoeffizienten der 8-periodischen Fortsetzung

siehe Angelas Mitteilung!

> dieser
> Funktion und geben Sie das Fourierpolynom F4 explizit an
>  Hallo Leute,
>  
> hab grad mal versucht diese Aufgabe zu rechnen. Aus der
> Zeichnung sehe ich, dass es sich um eine ungerade Funktion
> handelt oder?

Ja, das kann man durchaus "sehen". Ich frage mich nur, warum man sowas überhaupt sehen muss (im Sinne von "Aus der Zeichnung sehe ich...", womit Du eigentlich meinst, dass Du Dir (ein Teilstück des bzw.) den Graphen gezeichnest hast).

Ob eine Funktion ungerade bzw. gerade ist, erkennst Du (sofern der Definitionsbereich "um [mm] $0\,$ [/mm] symmetrisch ist"), indem Du prüfst, ob für alle [mm] $t\,$ [/mm] des Definitionsbereichs nun [mm] $f(-t)=-f(t)\,$ [/mm] bzw. [mm] $f(-t)=f(t)\,$ [/mm] gilt.
Bei Deiner Funktion gilt doch offenbar für jedes $t [mm] \in [/mm] [-2,2]$:
[mm] $$f(-t)=3*(-t)=-3*t=-f(t)\,,$$ [/mm]
also ist die Funktion [mm] $f\,$ [/mm] (und damit auch die periodische Fortsetzung von [mm] $f\,$) [/mm] eine ungerade Funktion.

> So, hab dann hiermit mal so n bisschen rumgerechnet:
>  
> [mm]bk=1/2\integral_{0}^{4} 3t*sin(\bruch{\pi*kt}{4})*dt[/mm]

Es wäre schön(er), wenn Du die Rechnung (meinetwegen auch nur stichwortartig) mitlieferst.
  

> Habe dann dort als Formel für die Fourierkoeffizienten
> folgendes raus
>  [mm]-\bruch{24}{\pi*k}*cos(\pi*k)[/mm]
>  
> Kann das jemand bestätigen? Wäre wirklich sehr
> dankbar...

S.o. Vielleicht hast Du aber auch Glück und jemand hat gerade Zeit und Lust, es nochmal selbstständig nachzurechnen.
(Richtig ist jedenfalls, dass alle [mm] $a_k=0$ [/mm] sind, weil [mm] $f\,$ [/mm] ungerade ist!)

Beste Grüße,
Marcel

Bezug
                
Bezug
Fourierkoeffizienten/Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 Do 23.09.2010
Autor: inseljohn

Hallo,

danke für Eure Antworte.
Ups, mit dem T->t hast du natürlich vollkommen recht. Da habe ich mich vertippt! Danke dafür.

Auf Angelas Mitteilung habe ich geantwortet.

Ja, das man das auch so prüfen kann, weiß ich ;)
Jedoch steht ja in der Aufgabe "zeichnen sie..." Aber egal, darum geht es nicht.

Ok, dann hier mal meine Rechnung dazu.

[mm] bk=1/2\integral_{0}^{4} 3t*sin(\bruch{\pi*kt}{4})*dt [/mm]

[mm] bk=\bruch{1}{2}[-3t*cos(\bruch{\pi*kt}{4})*\bruch{4}{\pi*k}]-\bruch{1}{2}\integral-3*cos(\bruch{\pi*kt}{4})*\bruch{4}{\pi*k}*dt [/mm]

[mm] bk=\bruch{1}{2}[-3t*cos(\bruch{\pi*kt}{4})*\bruch{4}{\pi*k}]+\bruch{1}{2}*[3*sin(\bruch{\pi*kt}{4}*\bruch{4^2}{\pi^2*k^2}) [/mm]

bk= [mm] [-\bruch{3}{2}t*cos(\bruch{\pi*kt}{4})*\bruch{4}{\pi*k}] [/mm]

dann komm ich auf

[mm] bk=[\bruch{-6*t}{\pi*k}*cos(\bruch{\pi*kt}{4})] [/mm] (in den grenzen 0 bis 4)

und damit komm ich dann auf
[mm] -\bruch{24}{\pi*k}*cos(\pi*k) [/mm]

puuhhhhh, das war anstrengend das hier reinzuhauen =)
Hoffe, jemand hat lust und zeit darauf. hehe :)

Bezug
                        
Bezug
Fourierkoeffizienten/Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Fr 24.09.2010
Autor: angela.h.b.


> Ok, dann hier mal meine Rechnung dazu.

Hallo,

offenbar hast Du Dich entschieden, den Aufgabentext in "4-periodische Fortsetzung" umzuwandeln. Wahrscheinlich sollte es auch so heißen.

>  
> [mm]bk=1/2\integral_{0}^{4} 3t*sin(\bruch{\pi*kt}{4})*dt[/mm]

Das ist nicht richtig. Richtig wäre [mm]b_k=1/2\integral_{-2}^{2} 3t*sin(\bruch{\pi*kt}{4})*dt[/mm].

Wenn Du von 0 bis 4 integrieren möchtest, was natürlich möglich ist, dann ist f(t) nicht =3t. zeichne Dir die periodisch fortgesetzte Funktion mal auf, dann siehst Du es.

Du müßtest in diesem Fall mit

[mm]f:(t)=\begin{cases}3t, & \mbox{fuer } t\in [0,2] \mbox{ } \\ 3t-12 & \mbox{fuer } t\in ]2,4] \mbox{ } \end{cases} [/mm]

arbeiten.

Gruß v. Angela

>  
> [mm]bk=\bruch{1}{2}[-3t*cos(\bruch{\pi*kt}{4})*\bruch{4}{\pi*k}]-\bruch{1}{2}\integral-3*cos(\bruch{\pi*kt}{4})*\bruch{4}{\pi*k}*dt[/mm]
>  
> [mm]bk=\bruch{1}{2}[-3t*cos(\bruch{\pi*kt}{4})*\bruch{4}{\pi*k}]+\bruch{1}{2}*[3*sin(\bruch{\pi*kt}{4}*\bruch{4^2}{\pi^2*k^2})[/mm]
>  
> bk=
> [mm][-\bruch{3}{2}t*cos(\bruch{\pi*kt}{4})*\bruch{4}{\pi*k}][/mm]
>
> dann komm ich auf
>  
> [mm]bk=[\bruch{-6*t}{\pi*k}*cos(\bruch{\pi*kt}{4})][/mm] (in den
> grenzen 0 bis 4)
>  
> und damit komm ich dann auf
>  [mm]-\bruch{24}{\pi*k}*cos(\pi*k)[/mm]
>  
> puuhhhhh, das war anstrengend das hier reinzuhauen =)
>  Hoffe, jemand hat lust und zeit darauf. hehe :)


Bezug
                        
Bezug
Fourierkoeffizienten/Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 12:04 Fr 24.09.2010
Autor: Marcel

Hallo,

> Hallo,
>  
> danke für Eure Antworte.
>  Ups, mit dem T->t hast du natürlich vollkommen recht. Da
> habe ich mich vertippt! Danke dafür.
>  
> Auf Angelas Mitteilung habe ich geantwortet.
>  
> Ja, das man das auch so prüfen kann, weiß ich ;)
>  Jedoch steht ja in der Aufgabe "zeichnen sie..." Aber
> egal, darum geht es nicht.
>  
> Ok, dann hier mal meine Rechnung dazu.
>  
> [mm]bk=1/2\integral_{0}^{4} 3t*sin(\bruch{\pi*kt}{\red{4}})*dt[/mm]

siehe Angelas Bemerkung, wenn Du mit [mm] $\int_0^4$ [/mm] arbeiten willst.

Aber:
Zum einen: [mm] $f\,$ [/mm] wird bei Dir 4-periodisch fortgesetzt, was heißt, dass
[mm] $$b_k=\frac{1}{2}\int_{-2}^2 3t*\sin(k*(\pi/\blue{2})*t)\;dt$$ [/mm]
ist. (Vgl. []Wiki, Fourierreihe: Hier ist [mm] $\omega=\frac{2\pi}{4}=\pi/2\,.$) [/mm]

Nun ist hier sowohl [mm] $f(t)=3t\,$ [/mm] als auch $t [mm] \mapsto \sin(k*(\pi/2)*t)$ [/mm] jeweils eine (auf $[-2,2]$) ungerade Funktion, woraus sich ergibt, dass (für jedes [mm] $k\,$) [/mm] der Integrand
$$t [mm] \mapsto 3t*\sin(k*(\pi/2)*t)=:g_k(t)$$ [/mm]
als Podukt zweier ungerader Funktionen eine (auf $[-2,2]$) gerade Funktion ist - d.h. [mm] $g_k(-t)=g_k(t)\,.$ [/mm]

Damit gilt offenbar:
[mm] $$b_k=\frac{1}{2}\int_{-2}^2 g_k(t)dt=\frac{1}{2}\;*2\int_0^2 g_k(t)\;dt=\int_0^2 g_k(t)\;dt=3*\int_0^2 t*\sin(k*(\pi/2)*t)\;dt,$$ [/mm]
was den Rechenaufwand evtl. ein wenig reduziert.

Beste Grüße,
Marcel

Bezug
                                
Bezug
Fourierkoeffizienten/Polynom: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:37 Fr 24.09.2010
Autor: inseljohn

Hallo,

vielen Dank für eure Antworten.
Nein, ich habe eigentlich keine 4-periodische Sache draus gemacht.

Habe grad eben nochmal alles überprüft und nochmal genau ins Skript geguckt. Dort habe ich folgende Formel für

[mm] bk=\bruch{2}{T}\integral_{0}^{T}{f(x) *sin *(\bruch{\pi*k*t}{T})dt} [/mm]

und für [mm] T=\bruch{periode}{2} [/mm]

Hab mich daran einfach gehalten, mit der Formel haben Sie es auch für zwei andere Aufgaben gemacht.

Jetzt bin ich verwirrt

Bezug
                                        
Bezug
Fourierkoeffizienten/Polynom: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Fr 24.09.2010
Autor: Marcel

Hallo,

> Hallo,
>  
> vielen Dank für eure Antworten.
> Nein, ich habe eigentlich keine 4-periodische Sache draus
> gemacht.

wenn [mm] $f\,$ [/mm] aber auf $[-2,2]$ definiert ist und periodisch fortgesetzt werden soll, wird [mm] $f\,$ [/mm] (genauer: die Fortsetzung von [mm] $f\,$) [/mm] logischerweise [mm] $2-(-2)=4\;\;$ [/mm] -periodisch sein.

> Habe grad eben nochmal alles überprüft und nochmal genau
> ins Skript geguckt. Dort habe ich folgende Formel für
>
> [mm]bk=\bruch{2}{T}\integral_{0}^{T}{f(\red{x}) *sin *(\bruch{\pi*k*t}{T})dt}[/mm]

[mm] $$\text{Ersetze }\red{x}\longleftrightarrow \blue{t}\text{ !!}$$ [/mm]

>  
> und für [mm]T=\bruch{periode}{2}[/mm]
>  
> Hab mich daran einfach gehalten, mit der Formel haben Sie
> es auch für zwei andere Aufgaben gemacht.
>  
> Jetzt bin ich verwirrt

Ich auch. Denn:
Wenn bei Euch [mm] $T=T_{Wikipedia}/2\,,$ [/mm] also die "halbe" Periode ist, dann ist hier also [mm] $T=T_{Wikipedia}/2=4/2=2\,.$ [/mm]

Somit wäre hier
[mm] $$b_k=b_k(f)=\frac{2}{T_{Wikipedia}}\int_{-2}^2 f(t)\sin(k*(2*\pi/T_{Wikipedia})*t)dt$$ [/mm]
[mm] $$=\blue{\frac{1}{T}}\int_{-2}^2 f(t)\sin(k*(\pi/T)*t)dt\,.$$ [/mm]

Ansonsten kannst Du die Formel so, wie sie bei Wikipedia steht, benutzen. Eine einzige Erklärung, die ich mir vorstellen könnte, warum bei Euch die [mm] $a_k$ [/mm] und [mm] $b_k$ [/mm] anders definiert sein könnten, wäre, wenn Ihr auch die Fourierreihe anders wie bei Wikipedia erklärt habt. Vielleicht hat aber Euer Prof. auch einfach bei [mm] $b_k=\ldots \int \ldots \sin(\ldots (\pi/T)\ldots)$ [/mm] einfach einen Faktor [mm] $2\,$ [/mm] verschlampt (er ist ja auch nur ein Mensch und daher nicht vor Fehlern gefeit). Denn wie gesagt:
Ansonsten sollte da auch [mm] $b_k=\blue{1/T}\ldots$ [/mm] stehen und nicht [mm] $b_k=\red{2/T} \ldots$ [/mm]

Beste Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de