www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Fourierreihe Koeffizienten
Fourierreihe Koeffizienten < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe Koeffizienten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:12 Mi 16.11.2011
Autor: Wieselwiesel

Aufgabe
Gegeben sei das folgende, zeitkontinuierliche Signal:
x(t) = [mm] sin(2\pi [/mm] t + [mm] \bruch{\pi}{3}) [/mm]

(a) Bestimmen Sie die Periodendauer und die Grundfrequenz ω_{0} von x(t).
(b) Bestimmen Sie die Fourier-Reihendarstellung in komplexer Form. Wieviele Koeffizienten müssen Sie berechnen?

Hallo,

Ich hab Probleme bei diesem Beispiel, bis jetzt hab ich [mm] \omega_{0} [/mm] = 2 [mm] \pi [/mm] und Periodendauer T = 1
Dann hab ich in die Formel x(t) $ [mm] \summe_{k=-\infty}^{\infty} a_{k} [/mm] $*$ [mm] e^{i\omega_{0} k t} [/mm] $ eingesetzt und das bekommen:

x(t) = [mm] -\bruch{i}{2}(e^{i2\pi t}e^{i\bruch{\pi}{3}}-e^{-i2\pi t}e^{-i\bruch{\pi}{3}}) [/mm]

Soweit so gut. Jetzt hab ich aber das Problem, dass ich die Koeffizienten nicht wirklich "rausfiltern" kann. Ich weiss dass sie Index 1 und -1 haben, aber das [mm] e^{i\bruch{\pi}{3}} [/mm] stört mich.
Ich hab die Lösung hier, aber ich kann sie nicht nachvollziehen.
Kann mir jemand auf die Sprünge helfen?

        
Bezug
Fourierreihe Koeffizienten: Antwort
Status: (Antwort) fertig Status 
Datum: 21:30 Mi 16.11.2011
Autor: MathePower

Hallo Wieselwiesel,

> Gegeben sei das folgende, zeitkontinuierliche Signal:
>  x(t) = [mm]sin(2\pi[/mm] t + [mm]\bruch{\pi}{3})[/mm]
>  
> (a) Bestimmen Sie die Periodendauer und die Grundfrequenz
> ω_{0} von x(t).
>  (b) Bestimmen Sie die Fourier-Reihendarstellung in
> komplexer Form. Wieviele Koeffizienten müssen Sie
> berechnen?
>  Hallo,
>  
> Ich hab Probleme bei diesem Beispiel, bis jetzt hab ich
> [mm]\omega_{0}[/mm] = 2 [mm]\pi[/mm] und Periodendauer T = 1
>  Dann hab ich in die Formel x(t)
> [mm]\summe_{k=-\infty}^{\infty} a_{k} [/mm]*[mm] e^{i\omega_{0} k t}[/mm]
> eingesetzt und das bekommen:
>  
> x(t) = [mm]-\bruch{i}{2}(e^{i2\pi t}e^{i\bruch{\pi}{3}}-e^{-i2\pi t}e^{-i\bruch{\pi}{3}})[/mm]
>  
> Soweit so gut. Jetzt hab ich aber das Problem, dass ich die
> Koeffizienten nicht wirklich "rausfiltern" kann. Ich weiss
> dass sie Index 1 und -1 haben, aber das [mm]e^{i\bruch{\pi}{3}}[/mm]
> stört mich.


Die Koeffizienten einer komplexen Fourierreihe
sind natürlich auch komplex.
Daher stört das [mm][mm]e^{i\bruch{\pi}{3}}[/mm] nicht.

x(t) ist in der Form [mm]a_{-1}*e^{-i*2*\pi*t}+a_{1}*e^{i*2*\pi*t}[/mm] darszustellen.


>  Ich hab die Lösung hier, aber ich kann sie nicht
> nachvollziehen.
>  Kann mir jemand auf die Sprünge helfen?


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de