Fourierreihe gerade/ungerade < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Gegeben sei die Funktion [mm] f(x)=\begin{cases} 0, & \mbox{für } -\pi \leq x \leq -\pi/2 \\ 0, & \mbox{für } -\pi/2 < x < \pi/2 \\ 0, & \mbox{für } \pi/2 \leq x \leq \pi \end{cases} [/mm] Bestimmen Sie die von der Fourierreihe dieser Funktion die Koeffizienten [mm] $A_5$ [/mm] und [mm] $A_6$. [/mm] |
Ich verstehe diese Aufgabe einer alten Klausur in dem Sinne nicht, dass wenn ich sie einzeichne sie natürlich durch die Intervallgrenzen begrenzt wird und dann im bereich zwischen [mm] $-\pi/2$ [/mm] und [mm] $\pi/2$ [/mm] einen Anstieg von 2 hat. Ok, aber warum kann ich hier A bestimmen, wenn die Funktion doch offensichtlich ungerade ist.
Hab ich irgendwas verpasst, dass man ungerade Fourierreihen neuerdings doch mit Cosinus integrieren muss?
Über eure Antworten wäre ich euch dankbar,
Cafearabica
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:04 Mi 27.06.2012 | Autor: | leduart |
Hallo
du hast dich wohl vertippt? bitte lies deine posts mit Vorschau!
deine Fkt ist überall 0 hat also die Fourriereihe 0.
a) wenn bei euch immer die koeff von cos A genannt wurden und die fkt ungerade ist, ist es ne Trickfrage mit ner einfachen antwort
oder verschiedene leute nenne die Koeff. verchieden, und die von cos eben b oder c.
Gruss leduart
|
|
|
|
|
Aufgabe | Gegeben sei die Funktion $ [mm] f(x)=\begin{cases} 0, & \mbox{für } -\pi \leq x \leq -\pi/2 \\ (2x-\pi), & \mbox{für } -\pi/2 < x < \pi/2 \\ 0, & \mbox{für } \pi/2 \leq x \leq \pi \end{cases} [/mm] $ a) Bestimmen Sie von der Fourierreihe [mm] $\frac{A_0}{2} [/mm] + [mm] \sum\limits_{n=1}^{\infty} (A_n \cos(nx) [/mm] + [mm] B_n\sin(nx))$ [/mm] |
Entschuldigung, dass ich die Aufgabenstellung falsch und dann auch noch nicht ganz vollständig abgetippt habe. Ich hoffe, jetzt kann mir besser geholfen werden. Viele Grüße
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:00 Do 28.06.2012 | Autor: | fred97 |
> Gegeben sei die Funktion [mm]f(x)=\begin{cases} 0, & \mbox{für } -\pi \leq x \leq -\pi/2 \\ (2x-\pi), & \mbox{für } -\pi/2 < x < \pi/2 \\ 0, & \mbox{für } \pi/2 \leq x \leq \pi \end{cases}[/mm]
> a) Bestimmen Sie von der Fourierreihe [mm]\frac{A_0}{2} + \sum\limits_{n=1}^{\infty} (A_n \cos(nx) + B_n\sin(nx))[/mm]
>
> Entschuldigung, dass ich die Aufgabenstellung falsch und
> dann auch noch nicht ganz vollständig abgetippt habe. Ich
> hoffe, jetzt kann mir besser geholfen werden. Viele Grüße
Oben schreibst Du:
" ....wenn die Funktion doch offensichtlich ungerade ist. "
Das ist aber nicht der Fall !
FRED
|
|
|
|
|
Aber ihr Schaubild ist doch nicht Achsensymmetrisch. Also ist sie doch eigentlich ungerade. Wenn sie die y Achse bei [mm] $-\pi$ [/mm] schneidet und eben eine Steigung von 2x hat. Schon 2x ist doch nie Achsensymmetrisch. Ich versteh es immernoch nicht. Das die Funktion irgendwie nicht ungerade sein kann, weil es ja Funktioniert mit dem cos integrieren ist mir klar, aber mir fehlt der richtige Anstoß. Wo denk ich falsch?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:44 Do 28.06.2012 | Autor: | leduart |
Hallo
ungerade:f(x)=-f(-x)
es gibt auch wie hier fkt die weder noch sind,
eigentlich meinst du mit gerade sym. zur y-Achse, mit ungerade punktsym zu (0,0)
gerade und ungerade kommt von Polynomen mit nur geraden oder nur ungeraden Exponenten.
Gruss leduart
|
|
|
|
|
Ah ok, und diese hier ist also weder noch, weil sie ja verschoben ist und bei verschobenen Funktionen gibt es immer einen Cosinus und einen Sinus Anteil in der Fourierreihe? Das ist ja verrückt.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 12:29 Do 28.06.2012 | Autor: | leduart |
Hallo
wieso verrückt? Wenn du die fkt durch 0 verschiebst wird ja auch aus den f=0 ein f=1, d.h. du kannst sie auch nicht durch verschieben sym machen,
warum denkst du hat die Fourrierreihe i.A. die 2 Teile?
und was ist die Frage?
Gruss leduart
|
|
|
|
|
Aber ihr Schaubild ist doch nicht Achsensymmetrisch. Also ist sie doch eigentlich ungerade. Wenn sie die y Achse bei schneidet und eben eine Steigung von 2x hat. Schon 2x ist doch nie Achsensymmetrisch. Ich versteh es immernoch nicht. Das die Funktion irgendwie nicht ungerade sein kann, weil es ja Funktioniert mit dem cos integrieren ist mir klar, aber mir fehlt der richtige Anstoß. Wo denk ich falsch?
|
|
|
|