www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Fourierreihe von x²
Fourierreihe von x² < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierreihe von x²: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 03:31 Fr 30.04.2010
Autor: erlkoenig

Aufgabe
Sei f durch [mm] f(x)=x^2 [/mm] auf [mm] [0,2\pi) [/mm] definiert und sonst [mm] 2\pi-periodisch [/mm] fortgesetzt.
Rechnen sie die Fourierreihe der Funktion f aus.

[mm] a_0=\integral_{0}^{2\pi}{x^2 dx} [/mm] = [mm] \frac{8\pi^2}{3} [/mm]

[mm] a_n=\frac{1}{\pi}\integral_{0}^{2\pi}{x^2*cos(nx) dx} [/mm]

[mm] =\frac{1}{\pi}[\frac{2nx*cos(nx)+(n^2*x^2-2)*sin(n*x)}{n²}]_{0}^{2\pi} [/mm]

[mm] =\frac{4\pi*n*cos(2\pi*n)+(4\pi^2*n^2-2)*sin(2\pi*n)}{\pi*n^3} [/mm]

Selbiges würde ich jetzt noch für [mm] b_n [/mm] machen aber ich bin mir ziemlich sicher, dass ich was falsch gemacht habe, ich komme nur selbst nicht drauf... wenn ich raten müsste würde ich sagen die Integrationsgrenzen sind falsch, aber wohin sonst und vorallem warum?

Ich habe jetzt schon einige Fourierreihen berechnet und die waren optisch deutlich schwerer, aber da gaben die Grenzen für mich immer Sinn.

Wäre dankbar für eine wenig bis viel Licht im Dunklen :)

Lieben Dank.

        
Bezug
Fourierreihe von x²: Antwort
Status: (Antwort) fertig Status 
Datum: 08:58 Fr 30.04.2010
Autor: angela.h.b.


> Sei f durch [mm]f(x)=x^2[/mm] auf [mm][0,2\pi)[/mm] definiert und sonst
> [mm]2\pi-periodisch[/mm] fortgesetzt.
>  Rechnen sie die Fourierreihe der Funktion f aus.
>  [mm]a_0=\integral_{0}^{2\pi}{x^2 dx}[/mm] = [mm]\frac{8\pi^2}{3}[/mm]
>  
> [mm]a_n=\frac{1}{\pi}\integral_{0}^{2\pi}{x^2*cos(nx) dx}[/mm]
>  
> [mm]=\frac{1}{\pi}[\frac{2nx*cos(nx)+(n^2*x^2-2)*sin(n*x)}{n²}]_{0}^{2\pi}[/mm]
>  
> [mm]=\frac{4\pi*n*cos(2\pi*n)+(4\pi^2*n^2-2)*sin(2\pi*n)}{\pi*n^3}[/mm]
>  
> Selbiges würde ich jetzt noch für [mm]b_n[/mm] machen aber ich bin
> mir ziemlich sicher, dass ich was falsch gemacht habe, ich
> komme nur selbst nicht drauf... wenn ich raten müsste
> würde ich sagen die Integrationsgrenzen sind falsch, aber
> wohin sonst und vorallem warum?
>  
> Ich habe jetzt schon einige Fourierreihen berechnet und die
> waren optisch deutlich schwerer, aber da gaben die Grenzen
> für mich immer Sinn.
>  
> Wäre dankbar für eine wenig bis viel Licht im Dunklen :)

Hallo,

ich hab' deine Integrale nicht nachgerechnet, aber Deine Grenzen sind goldrichtig:
es wird der "aufwärtsstrebende" Parabelzweig über [mm] [0,2\pi] [/mm] periodisch fortgesetzt.

Ich sag' Dir auch, was falsch wäre: [mm] a_n=\frac{1}{\pi}\integral_{-\pi}^{\pi}{x^2*cos(nx) dx} [/mm] ,
denn dann würde man die Fourierreihe der Funktion, die aus periodisch fortgesetzten "U"-Bogen besteht, berechnen.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de