www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Numerik" - Frage Aufgabenstellung
Frage Aufgabenstellung < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage Aufgabenstellung: Erklärung( evtl. Tipps)
Status: (Frage) beantwortet Status 
Datum: 13:11 Mo 11.06.2012
Autor: Count123

Aufgabe
F : [mm] \IR^{n} [/mm] -> [mm] \IR^{m} [/mm]

F stetig diffbar,

r(x):= 0,5 [mm] ||F(x)||^{2} [/mm] ...hier ist die 2-er norm gemeint..

Sei der gradient G von r(x) an der stelle [mm] x_{0} [/mm] ungleich 0 und s [mm] \in \IR^{n} [/mm] ungleich 0

zz: r(x) nimmt an der der stelle [mm] x_{0} [/mm] lokal in richtung s ab, wenn

[mm] G(x_{0})^{T} [/mm] s < 0


Hallo :)

Die aufgabe (wie auch die weiteren) fallen mir nicht gerade leicht, da sie alle ähnlich gestellt sind :D

was bedeutet "r(x) nimmt an der der stelle [mm] x_{0} [/mm] lokal in richtung s ab"
bevor ich da einen fehler mache, frage ich hiermal nach, was ich konkret zeigen muss..

und wenn jemand tipps zur lösung hat, nehme ich die gerne an :) aber am meisten verwirrt mich die aufgabenstellung.

Danke sehr :)

LG Count123



        
Bezug
Frage Aufgabenstellung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Mo 11.06.2012
Autor: fred97

Betrachte [mm] f(t):=r(x_0+ts) [/mm]

Zeigen sollst Du: es gibt ein [mm] \delta>0 [/mm] mit der Eigenschaft:

               f ist auf dem Intervall [mm] $(-\delta, \delta)$ [/mm] monoton fallend.

Dazu genügt es zu zeigen, dass f'(0)<0 ist. Denn dann gilt: es gibt ein [mm] \delta [/mm] >0 mit f'(t)<0 für t [mm] \in $(-\delta, \delta)$, [/mm] da f stetig ist.

Jetzt hab ich Dir (fast) alles verraten.

FRED



Bezug
                
Bezug
Frage Aufgabenstellung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 13:47 Mo 11.06.2012
Autor: Count123

Danke sehr :) ja, das ist mir klar geworden. Mithilfe der Kettenregel und der zusätzlichen voraussetzung ergibt sich da ja dann schon..

jetzt muss ich aber was ähnliches zeigen

Im gauß-Newton-Verfahren wird die Richtung [mm] s^{k} [/mm] im k-ten Iterationsschritt eindeutig festgelegt als das [mm] s^{k} [/mm] mit minimaler 2-Norm, für welches

[mm] ||F'(x^{k})s^{k} [/mm] - [mm] F(x^{k})||=min (F'(x^{k})s [/mm] - [mm] F(x^{k})) [/mm]

(Hier das Minimum über s)

Nun ist der gradient von [mm] r(x^{k}) [/mm] ungleich 0

Zu zeigen ist wieder dasselbe wie eben..das habe ich auch verstanden :) danke nochmal :)

ich soll die Lösung des Ausgleichsproblems mit Hilfe der Singulärwertzerlegung ausdrücken..aber wie macht man das?

LG Count123





Bezug
                        
Bezug
Frage Aufgabenstellung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Mi 13.06.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de