www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - Frage zum Betrag Komplexer Fkt
Frage zum Betrag Komplexer Fkt < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zum Betrag Komplexer Fkt: |g-s|^2 = |g|^2 + |s|^2 - ...
Status: (Frage) beantwortet Status 
Datum: 12:48 Sa 22.11.2008
Autor: Drno

Aufgabe
Zeigen Sie, dass für zwei komplexe Zahlen g, s gilt:

[mm] |g-s|^2 [/mm] = [mm] |g|^2 [/mm] + [mm] |s|^2 [/mm] - conj(g) * s - conj(s) * g

* = mal
conj = konjugiert komplex

Hallo,

wie komme ich auf das obige Ergebnis?
Dass es stimmt ist mir klar, aber mir fehlt der Ansatz um darauf zu kommen.
Gibt es da einen einfachen "Trick"/Weg oder müsste man das wirklich mal genau ausmultiplizieren? Und wenn wie genau?

Danke für alle Antworten,

Moritz

        
Bezug
Frage zum Betrag Komplexer Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Sa 22.11.2008
Autor: angela.h.b.


> Zeigen Sie, dass für zwei komplexe Zahlen g, s gilt:
>  
> [mm]|g-s|^2[/mm] = [mm]|g|^2[/mm] + [mm]|s|^2[/mm] - [mm] \overline{g} [/mm] * s - [mm] \overline{s} [/mm] * g
>  
> * = mal
> [mm] \overline{x} [/mm] =  x konjugiert komplex

>  Hallo,
>  
> wie komme ich auf das obige Ergebnis?
>  Dass es stimmt ist mir klar, aber mir fehlt der Ansatz um
> darauf zu kommen.

Hallo,

das ist ja skurril. Warum ist  Dir klar, daß das stimmt?

>  Gibt es da einen einfachen "Trick"/Weg oder müsste man das
> wirklich mal genau ausmultiplizieren? Und wenn wie genau?

Wie berechnet man denn den Betrag einer komplexen Zahl?

Gruß v. Angela

Bezug
                
Bezug
Frage zum Betrag Komplexer Fkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 Sa 22.11.2008
Autor: Drno

Also es steht so im Skript. Aber ich würde gerne wissen, ob es sich dabei um eine offensichtliche Sache handelt wie [mm] |s|^2 [/mm] = s*conj(s) oder um eine längere Berechnung.

Bezug
                        
Bezug
Frage zum Betrag Komplexer Fkt: siehe unten!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:19 Sa 22.11.2008
Autor: Loddar

Hallo Drno!


Es ist schon etwas Rechnerei ... siehe meinen Tipp unten!


Gruß
Loddar


Bezug
                        
Bezug
Frage zum Betrag Komplexer Fkt: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Sa 22.11.2008
Autor: angela.h.b.


> Also es steht so im Skript. Aber ich würde gerne wissen, ob
> es sich dabei um eine offensichtliche Sache handelt wie
> [mm]|s|^2[/mm] = s*conj(s) oder um eine längere Berechnung.

Hallo,

leider hast Du meine Frage nach dem Betrag nicht beantwortet.

Du kannst diese Aufgab so lösen, wie Dir Loddar vorschlägt, aber auch, indem Du mit den Regeln fürs Rechnen mit Konjugiert-Komplexen anwendest, die Ihr im Dunstkreis der Formel sicher notiert habt.

Leg doch mal los:

[mm] |g-s|^2= [/mm] ...      jetzt erstmal verwenden, was der Betrag einer komplexen Zahl ist, und dann weiter.

Es ist kurz und einfach.

Gruß v. Angela


Bezug
        
Bezug
Frage zum Betrag Komplexer Fkt: einsetzen
Status: (Antwort) fertig Status 
Datum: 12:57 Sa 22.11.2008
Autor: Loddar

Hallo Drno!


Setze:
$$g \ := \ x+i*y$$
$$s \ := \ a+i*b$$
Und nun berechne mal beide Seiten der Gleichung separat und vergleiche.


Gruß
Loddar


Bezug
                
Bezug
Frage zum Betrag Komplexer Fkt: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:34 Sa 22.11.2008
Autor: Drno

OK ihr habt mich, ich rechne es aus ;-)

also
g = a + ib
s = c + id

[mm] |g-s|^2 [/mm] = |a-c + [mm] i(b-d)|^2 [/mm] (1)

a-c = a', b-d = b'

(1) = a'^2 + b'^2 = [mm] (a^2 [/mm] - 2ac + [mm] c^2) +(b^2 [/mm] - 2bd + [mm] d^2) [/mm] (2)

-------------------------

[mm] |g|^2 [/mm] + [mm] |s|^2 [/mm]  - conj(g) * s - conj(s) * g  

= [mm] a^2 [/mm] + [mm] b^2 [/mm] + [mm] c^2 [/mm] + [mm] d^2 [/mm] - [(a+ib)(c-id)] - [(a-ib)(c+id)]
= ... -[ac + bd -iad+ ibc] - [ac + bd - ibc +iad]
= ... (-2ac -2bd) = (2)

qed

Gibts da einen kürzeren weg?

Bezug
                        
Bezug
Frage zum Betrag Komplexer Fkt: siehe oben.
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:49 Sa 22.11.2008
Autor: angela.h.b.


> OK ihr habt mich, ich rechne es aus ;-)
>  
> also
> g = a + ib
>  s = c + id
>  
> [mm]|g-s|^2[/mm] = |a-c + [mm]i(b-d)|^2[/mm] (1)
>  
> a-c = a', b-d = b'
>  
> (1) = a'^2 + b'^2 = [mm](a^2[/mm] - 2ac + [mm]c^2) +(b^2[/mm] - 2bd + [mm]d^2)[/mm]
> (2)
>  
> -------------------------
> Gibts da einen kürzeren weg?  

Hallo,

siehe oben, und starte mit

[mm] |g-s|^2= (g-s)*\overline{g-s} [/mm] = ...

Gruß v. Angela


Bezug
                                
Bezug
Frage zum Betrag Komplexer Fkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:41 Mo 24.11.2008
Autor: Drno

OK, das ist tatsächlich einfacher.

Irgendwie hatte ich da wohl ein Brett vorm Kopf.

Danke für die Hilfe!

MFG Moritz

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de