www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Lineare Algebra" - Frage zum Kongruenzsystem
Frage zum Kongruenzsystem < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zum Kongruenzsystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 So 15.01.2006
Autor: benemaja

Hallo!
ICh habe eine Frage zu folgendem Koongruenzsystem:

3x   + 7y  [mm] \equiv [/mm] 10 (mod 14)
10x -  8y  [mm] \equiv [/mm]  6   (mod 14)

Ich sitze da jetzt schon ne weile vor..
Würde es was bringen, wenn ich die erste Gleichung mit 2 multipliziere?
Also ich weiß nicht, wie ich eine VAriable aus den Kongruenzen herauslösen kann.

Wäre nett, wenn ihr mir helfen könntet.
mfg Bene

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Frage zum Kongruenzsystem: Antwort
Status: (Antwort) fertig Status 
Datum: 14:44 So 15.01.2006
Autor: felixf

Hallo!

>  ICh habe eine Frage zu folgendem Koongruenzsystem:
>  
> 3x   + 7y  [mm]\equiv[/mm] 10 (mod 14)
>  10x -  8y  [mm]\equiv[/mm]  6   (mod 14)
>  
> Ich sitze da jetzt schon ne weile vor..
>  Würde es was bringen, wenn ich die erste Gleichung mit 2
> multipliziere?

Nein, 2 ist keine Einheit modulo 14 (ist also nicht invertierbar), womit du Informationen verlierst (wenn du nicht beide alten Gleichungen mit dazu nimmst).

Versuch doch mal das folgende: Addiere die beiden Gleichungen zusammen!

LG Felix


Edit: Ich seh grad, wenn man weiterrechnet bekommt man am Ende immer sowas wie $2 x [mm] \equiv [/mm] ... [mm] \pmod{14}$, [/mm] also kannst du eigentlich auch gleich die erste Gleichung mit $2$ multiplizieren... Du musst es halt nur begruenden, und das wirst du erst spaeter machen koennen wenn du weitergerechnet hast.


Bezug
                
Bezug
Frage zum Kongruenzsystem: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:32 So 15.01.2006
Autor: benemaja

Danke erstma!

Hab nur noch nen kleines Problem:
Wenn ich beide Kongruenzen addiere, fleigt ja keine Variable raus.

Wie kann ich das dann noch eindeutig lösen?

mfg Bene

Bezug
                        
Bezug
Frage zum Kongruenzsystem: Vorgehensweise
Status: (Antwort) fertig Status 
Datum: 09:17 Mo 16.01.2006
Autor: statler

Guten Morgen Bene!

> Danke erstma!
>  
> Hab nur noch nen kleines Problem:
>  Wenn ich beide Kongruenzen addiere, fleigt ja keine
> Variable raus.
>  
> Wie kann ich das dann noch eindeutig lösen?
>  
> mfg Bene

Ein möglicher Lösungsweg:

Erst beide Kongruenzen mod 7 betrachten:

3x [mm] \equiv [/mm] 3   mod 7
3x – y [mm] \equiv [/mm] -1  mod 7

Das ist einfach zu lösen: x [mm] \equiv [/mm] 1 mod 7 und y [mm] \equiv [/mm] 4 mod 7

Dann beide Kongruenzen mod 2 betrachten:

x [mm] \equiv [/mm] -y mod 2, d. h. x [mm] \equiv [/mm] y mod 2

(Die 2. ist immer erfüllt!)

Jetzt zusammenfassen:

x [mm] \equiv [/mm] 1 mod 7 gibt die Möglichkeiten x [mm] \equiv [/mm] 1 und x [mm] \equiv [/mm] 8 mod 14
y [mm] \equiv [/mm] 4 mod 7 gibt die Möglichkeiten y [mm] \equiv [/mm] 4 und y [mm] \equiv [/mm] 11 mod 14

Aus x [mm] \equiv [/mm] y mod 2 folgen jetzt die Möglichkeiten
       x [mm] \equiv [/mm] 1 und y [mm] \equiv [/mm] 11 mod 14
und x [mm] \equiv [/mm] 8 und y [mm] \equiv [/mm] 4  mod 14

Probe zeigt: Beide sind OK

Gruß aus HH-Harburg
Dieter


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de