www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Gleichungssysteme" - Frage zum unterbestimmten Gl.
Frage zum unterbestimmten Gl. < Lineare Gleich.-sys. < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zum unterbestimmten Gl.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Fr 25.03.2011
Autor: Crashday

Halihalo,

ich übe gerade ein wenig für die Matheklausur und ich komme an einem Gleichungssystem nicht weiter.

Die Gleichungs lautet so:
[mm] -12x^2+6x^2+15x^3=0 [/mm]
[mm] 6x^1-10x^2+5x^3=0 [/mm]
[mm] 6x^1+4x^2-20x^3=0 [/mm]

Zunächst hab ich die 3. Gleichung mit der 2. Gleichung subtrahiert und die 3. Gleichung mit 2 multipliziert und mit der 1. Gleichung addiert:

[mm] 12x^1+6x^2+15x^3=0 [/mm]
[mm] 0x^1+14x^2-25x^3=0 [/mm]
[mm] 0x^1+14x^2-25x^3=0 [/mm]

Eine andere Möglichkeit gibt es auch und zwar, wenn ich oben das 1. Gleichungssystem mit der 2. addiere, wobei die 2. mit 2 multipliziert wurde und die 1. Gleichung mit der 3. addieren, die auch mit 2 multipliziert wurde. Das sieht dann so aus:

[mm] 12x^1+6x^2+15x^=0 [/mm]
[mm] 0x^1-14x^2+25x^3=0 [/mm]
[mm] 0x^1+14x^2-25x^3=0 [/mm]

Wenn ich bei dem 1. Gleichungssystem die 2. und die 3. Gleichung subtrahiere, fallen die beiden weg. Bei dem 2. Gleichungssystem ist es so, wenn ich die 2. und 3. Gleichung addiere fallen beide weg.

Nun meine Frage: Ist es egal, ob jetzt das 1. Gleichungssystem raus kommt, wo man subtrahiert oder ob das 2. Gleichungssystem raus kommen muss, wo man addiert. Es spielt dann keine Rolle, was dann für [mm] x^1 [/mm] etc. rauskommen muss. Dann würden doch bei dem ersten Gleichungssystem sowie beim 2. Gleichungssystem die selben x-Werte rauskommen oder?

(Bei meinem nächsten Schritt würde ich dann [mm] x^2 [/mm] oder [mm] x^3 [/mm] durch k ersetzen und somit dann [mm] x^1 [/mm] etc. ausrechnen)



        
Bezug
Frage zum unterbestimmten Gl.: Antwort
Status: (Antwort) fertig Status 
Datum: 21:02 Fr 25.03.2011
Autor: Schadowmaster

Also es gibt ja eine recht eindeutige Lösung für x (die man praktisch sofort sieht).
Wenn du eine deiner beiden Rechnungen zu Ende führst kannst du beweisen, dass es keine andere gibt...
Und um auf deine Frage zu sprechen zu kommen: ja, es ist egal welches Gleichungssystem rauskommt.
Nur wie gesagt, rechne das mit einem der beiden mal bis zum Ende durch und guck ob es eine zweite Lösung neben der offensichtlichen gibt (falls ja verrat sie, denn ich sehe keine^^).

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Gleichungssysteme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de