www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Frage zur Notation
Frage zur Notation < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zur Notation: Index x_0
Status: (Frage) beantwortet Status 
Datum: 12:43 Mo 23.01.2006
Autor: Pacapear

Aufgabe
Wie lautet die Gleichung der Tangentialebebe von f(x,y) = [mm] 3x^2 [/mm] + y im Punkt (2, 1, 13)

Hallo.

Ich habe gerade die Aufgabe zur Tangetialebene gemacht, und habe eine kleine Frage zur Notation.

Die Formel für die Tangentialebene ist ja: z - [mm] z_0 [/mm] = [mm] f_{x} (x_{0}, y_{0}) [/mm] * (x - [mm] x_{0}) [/mm] + [mm] f_{y} (x_{0}, y_{0}) [/mm] * (y - [mm] y_{0}). [/mm]

Jetzt hab ich zuerst mal die Ableitungen allgemein berechnet:

[mm] f_{x}(x, [/mm] y) = 6x
[mm] f_{y}(x, [/mm] y) = 1

Aber eigentlich soll ich doch die Ableitung für [mm] f_{x} (x_{0}, y_{0}) [/mm] und [mm] f_{y} (x_{0}, y_{0}) [/mm] berechnen. Dafür benötige ich doch die Funktion [mm] f(x_{0}, y_{0})? [/mm]

Oder lieg ich jetzt völlig falsch, und muss ich das [mm] x_0 [/mm] quasi als einen ganz normalen Punkt betrachten, und diesen in der "normalen" ableitung einfach für x einsetzen.

Also quasi: statt berechne Ableitung an der Stelle x = 2, heißt es hier: berechne Ableitung an der Stelle x = [mm] x_0. [/mm] Ist es so richtig?

LG, Nadine

        
Bezug
Frage zur Notation: Klärung
Status: (Antwort) fertig Status 
Datum: 14:34 Mo 23.01.2006
Autor: statler

Hallo Nadine!

> Wie lautet die Gleichung der Tangentialebebe von f(x,y) =
> [mm]3x^2[/mm] + y im Punkt (2, 1, 13)

> Ich habe gerade die Aufgabe zur Tangetialebene gemacht, und
> habe eine kleine Frage zur Notation.
>  

Hier einschieben: Für [mm] z_0 [/mm] = [mm] f(x_0,y_0) [/mm] ist

> Die Formel für die Tangentialebene

im Punkt [mm] (x_0, y_0, z_0) [/mm]

> ist ja: z - [mm]z_0[/mm] = [mm]f_{x} (x_{0}, y_{0})[/mm]
> * (x - [mm]x_{0})[/mm] + [mm]f_{y} (x_{0}, y_{0})[/mm] * (y - [mm]y_{0}).[/mm]
>  
> Jetzt hab ich zuerst mal die Ableitungen allgemein
> berechnet:

genauer: die partiellen Ableitungen

> [mm]f_{x}(x,[/mm] y) = 6x
>  [mm]f_{y}(x,[/mm] y) = 1

OK

> Aber eigentlich soll ich doch die Ableitung für [mm]f_{x} (x_{0}, y_{0})[/mm]
> und [mm]f_{y} (x_{0}, y_{0})[/mm] berechnen.

Das sind jetzt Zahlen, nämlich Werte der partiellen Ableitungen an einer bestimmten Stelle.

> Oder lieg ich jetzt völlig falsch, und muss ich das [mm]x_0[/mm]
> quasi als einen ganz normalen Punkt betrachten, und diesen
> in der "normalen" ableitung einfach für x einsetzen.

So isses.

> Also quasi: statt berechne Ableitung an der Stelle x = 2,
> heißt es hier: berechne Ableitung an der Stelle x = [mm]x_0.[/mm]
> Ist es so richtig?

Hier ist [mm] x_0 [/mm] = 2, [mm] y_0 [/mm] = 1 und dann automatisch [mm] z_0 [/mm] = 13.

Gruß aus HH-Harburg
Dieter




Bezug
                
Bezug
Frage zur Notation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Mo 23.01.2006
Autor: Pacapear

Vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de