www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Komplexe Analysis" - Frage zur komplexen Ableitung
Frage zur komplexen Ableitung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frage zur komplexen Ableitung: Kontrolle einer Aufgaben
Status: (Frage) beantwortet Status 
Datum: 15:46 Fr 28.04.2006
Autor: felix024

Aufgabe
In welchen Punkten ist die Funktion g(x+iy)=2xy+i(x+ [mm] \bruch{2}{3}y^3) [/mm] komplex differenzierbar?

Hallo,

ich habe bei der obigen Aufgabe einfach die Cauchy-Riemannschen DGL genutzt und bin auf die Punkte -1+i und -1+0*i gekommen. Die anderen im Kurs meinen jetzt aber die Funktion wäre überall komplex differenzierbar, da sie total differenzierbar ist. Aber muss man dann nicht zusätzlich zur totalen Differenzierbarkeit noch zeigen, dass die Ableitung komplex linear ist und benötigt man dafür nicht die Cauchy-Riemannschen DGL.

Eigentlich bin ich mir recht sicher, aber wenn alle anderen ein anderes Ergebnis haben, wird man ja doch etwas unsicher.

Vielen Dank
Felix

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Frage zur komplexen Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:15 Fr 28.04.2006
Autor: goeba

Hallo,

ich hab´s nicht nachgerechnet, aber Deine grundsätzliche Aussage ist völlig richtig:
- aus der totalen Diffbarkeit folgt nicht die komplexe Diffbarkeit
- man prüft Cauchy-Riemann

Viele Grüße,

Andreas

Bezug
        
Bezug
Frage zur komplexen Ableitung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:20 So 30.04.2006
Autor: felixf

Hallo Felix!

> In welchen Punkten ist die Funktion g(x+iy)=2xy+i(x+
> [mm]\bruch{2}{3}y^3)[/mm] komplex differenzierbar?

Sei $u(x,y) := [mm] \Re [/mm] g(x+iy) = 2 xy$ und $v(x,y) := [mm] \Im [/mm] g(x+iy) = x + [mm] \frac{2}{3} y^3$. [/mm] Damit ist [mm] $u_x [/mm] = 2 y$, [mm] $u_y [/mm] = 2 x$, [mm] $v_x [/mm] = 1$, [mm] $v_y [/mm] = 2 [mm] y^2$. [/mm]

Die CR-DGln sind [mm] $u_x [/mm] = [mm] v_y$, $u_y [/mm] = [mm] -v_x$. [/mm] Die Zweite ist gerade $2 x = -1$, also $x = [mm] -\frac{1}{2}$. [/mm] Und die Erste ist $2 y = 2 [mm] y^2$, [/mm] also $y = 0 [mm] \vee [/mm] y = 1$.

Also ist der Realteil deiner Ergebnisse

> Cauchy-Riemannschen DGL genutzt und bin auf die Punkte -1+i
> und -1+0*i gekommen. Die anderen im Kurs meinen jetzt aber

falsch!

LG Felix


Bezug
                
Bezug
Frage zur komplexen Ableitung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:11 Di 02.05.2006
Autor: felix024

Hallo

vielen Dank für eure Hinweise. Ich hatte mich in der Tat beim Realteil verrechnet.

Gruß
Felix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de