www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Fragen Gemensame Dichtefkt.
Fragen Gemensame Dichtefkt. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fragen Gemensame Dichtefkt.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:30 Mo 15.02.2010
Autor: jaruleking

Hallo ich habe mal paar Fragen zur Bestimmung der gemeinsamen Dichtefunktion.

Z.B. bei den Zufallsvariablen X,Y die beide [mm] Exp(\lambda) [/mm] verteilt sind, so gilt für die gemeinsame Dichte, die Produktdichte, d.h.

[mm] f(x,y)=\lambda*e^{-\lambda*x}*\lambda*e^{-\lambda*y}=\lambda^2 e^{-2\lambda(x+y)} [/mm]

So, jetzt habe ich sogar irgendwo mal gesehen, dass die das dann sogar so geschrieben haben:

[mm] f(x,y)=\lambda^2 e^{-2\lambda(x+y)}*1I_{[0,\infty)}(x)*1I_{[0,\infty)}(y) [/mm] (1I soll die Indikatorfunktion sein).


Meine erste Frage:

Wann muss ich die Funktionen immer mit [mm] 1I_{[0,\infty)}(x)*1I_{[0,\infty)}(y) [/mm] multiplizieren? Macht man das nur bei den gemeinsamen Dichten? oder auch bei den Randverteilungen?

Meine zweite Sache ist:

Ich habe mit Hilfe des Forums mal die Dichte von max(X,Y) berechnet, wobei X,Y wieder beide [mm] Exp(\lambda) [/mm] verteilt waren. Man Gab mir den Tipp, dass für die Verteilungsfunktion gilt:

[mm] F_{max(X,Y)}(x) [/mm] = [mm] \produkt_{i=1}^{n}F_{i}(x) [/mm]

Wir kamen dann dort auf [mm] F_{max(X,Y)}(x) =(1-e^{-\lambda*x})*(1-e^{-\lambda*x})=1- 2*\lambda*e^{-\lambda*x}+e^{2*\lambda*x} [/mm] und damit bekommt man die Dichte:

[mm] f_{max(X,Y)}(x)=F'_{max(X,Y)}(x)=2*\lambda*e^{-\lambda*x}(1-e^{-\lambda*x}) [/mm]

Meine Fragen jetzt hierzu:

1) Wieso muss man, wenn man die Dichte von max(X,Y) bestimmen will, den Umweg über die Verteilungsfunktion gehen?? In der Aufgabe oben, haben wir doch auch einfach gleich die Produktdichte gebildet, wieso geht das hier nicht, und man muss erst die Produktverteilung bilden??

2) Wieder: oben haben wir bei der Berechnung der gemeinsamen Dichte zwei Variablen gehabt, [mm] f(x,y)=\lambda^2 e^{-2\lambda(x+y)}, [/mm] d.h. die Dichte ist abhängig von x und y. Wieso hängt aber die Dichte von max(X,Y) nur von x ab? oder haben wir es falsch gemacht, und es hätte auch hier bei der Berechnung der Produktverteilung [mm] F_{max(X,Y)}(x,y) =(1-e^{-\lambda*x})*(1-e^{-\lambda*y}) [/mm] heißen müssen???

3) Und dann noch meine letzte frage, muss man hier die Dichte nicht auch wieder mit der Indikatorfkt. multiplizieren? d.h. mit [mm] 1I_{[0,\infty)}(x)??? [/mm]


Wäre echt nett, wenn mir jemand diese Sachen erklären könnte.

Grüße

        
Bezug
Fragen Gemensame Dichtefkt.: Antwort
Status: (Antwort) fertig Status 
Datum: 22:21 Mo 15.02.2010
Autor: tobit09

Hallo,

> Z.B. bei den Zufallsvariablen X,Y die beide [mm]Exp(\lambda)[/mm]
> verteilt sind, so gilt für die gemeinsame Dichte, die
> Produktdichte, d.h.
>  
> [mm]f(x,y)=\lambda*e^{-\lambda*x}*\lambda*e^{-\lambda*y}=\lambda^2 e^{-2\lambda(x+y)}[/mm]
>  
> So, jetzt habe ich sogar irgendwo mal gesehen, dass die das
> dann sogar so geschrieben haben:
>  
> [mm]f(x,y)=\lambda^2 e^{-2\lambda(x+y)}*1I_{[0,\infty)}(x)*1I_{[0,\infty)}(y)[/mm]
> (1I soll die Indikatorfunktion sein).
>  
>
> Meine erste Frage:
>  
> Wann muss ich die Funktionen immer mit
> [mm]1I_{[0,\infty)}(x)*1I_{[0,\infty)}(y)[/mm] multiplizieren? Macht
> man das nur bei den gemeinsamen Dichten? oder auch bei den
> Randverteilungen?

Die Dichte einer [mm] $\operatorname{Exp}(\lambda)$-Verteilung [/mm] ist gegeben durch [mm] $g(x)=\lambda*e^{-\lambda*x}*1I_{[0,\infty)}(x)$. [/mm] Die Indikatorfunktion am Ende kann man weglassen, wenn klar ist, dass die Exponentialverteilung auf dem Intervall [mm] $[0,\infty)$ [/mm] lebt.

> 1) Wieso muss man, wenn man die Dichte von max(X,Y)
> bestimmen will, den Umweg über die Verteilungsfunktion
> gehen?? In der Aufgabe oben, haben wir doch auch einfach
> gleich die Produktdichte gebildet, wieso geht das hier
> nicht, und man muss erst die Produktverteilung bilden??

Tja, die Zufallsvariablen max(X,Y) und (X,Y) gehen nun mal auf unterschiedliche Weise aus X und Y hervor. Da braucht man halt dann auch verschiedene Verfahren zur Berechnung der Verteilungen.

> 2) Wieder: oben haben wir bei der Berechnung der
> gemeinsamen Dichte zwei Variablen gehabt, [mm]f(x,y)=\lambda^2 e^{-2\lambda(x+y)},[/mm]
> d.h. die Dichte ist abhängig von x und y. Wieso hängt
> aber die Dichte von max(X,Y) nur von x ab? oder haben wir
> es falsch gemacht, und es hätte auch hier bei der
> Berechnung der Produktverteilung [mm]F_{max(X,Y)}(x,y) =(1-e^{-\lambda*x})*(1-e^{-\lambda*y})[/mm]
> heißen müssen???

(X,Y) ist eine Zufallsvariable mit Werten in [mm] $\IR^2$, [/mm] max(X,Y) ist eine Zufallsgröße mit Werten in [mm] $\IR$. [/mm] Also sind Dichten von (X,Y) auf [mm] $\IR^2$ [/mm] definierte Funktionen und Dichten von max(X,Y) auf [mm] $\IR$ [/mm] definiert (genauer gesagt: jeweils auf Teilmengen davon definiert).

> 3) Und dann noch meine letzte frage, muss man hier die
> Dichte nicht auch wieder mit der Indikatorfkt.
> multiplizieren? d.h. mit [mm]1I_{[0,\infty)}(x)???[/mm]

S.o.

Viele Grüße
Tobias

Bezug
                
Bezug
Fragen Gemensame Dichtefkt.: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:29 Mo 15.02.2010
Autor: jaruleking

Danke für die Erläuterungen.

Grüße

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de