www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Freiheit Gruppen
Freiheit Gruppen < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Freiheit Gruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:59 Mi 13.03.2013
Autor: ehjcuioe34

Aufgabe
Zeigen Sie, dass, wenn [mm] $\mathcal{C}$ [/mm] abgeschlossen unter Untergruppenbildung ist, eine Gruppe, die frei bzgl. Definition 1 ist, auch frei bzgl. Definition 2 ist.

Definition 1: Sei $X$ eine Menge und [mm] $\mathcal{C}$ [/mm] eine Klasse von Gruppen. [mm] $F\in\mathcal{C}$ [/mm] mit einer Abbildung [mm] $\iota:X\rightarrow [/mm] F$ heißt [mm] $\mathcal{C}$-frei [/mm] über $X$, wenn [mm] $\forall G\in\mathcal{C}\forall f:X\rightarrow [/mm] G$ es genau einen Homomorphismus [mm] $\overline{f}:F\rightarrow [/mm] G$ mit [mm] $f=\overline{f}\circ\iota$ [/mm] gibt.

Definition 2: Sei $X$ eine Menge und [mm] $\mathcal{C}$ [/mm] eine Klasse von Gruppen. [mm] $F\in\mathcal{C}$ [/mm] mit einer Abbildung [mm] $\iota:X\rightarrow [/mm] F$ heißt [mm] $\mathcal{C}$-frei [/mm] über $X$, wenn
1) $F$ von [mm] $\iota(X)$ [/mm] erzeugt wird und
2) [mm] $\forall G\in\mathcal{C}\forall f:X\rightarrow [/mm] G$ es einen Homomorphismus [mm] $\overline{f}:F\rightarrow [/mm] G$ mit [mm] $f=\overline{f}\circ\iota$ [/mm] gibt.

Um die Implikation zu beweisen, muss ich also zeigen, dass wenn es genau einen solchen Homomorphismus gibt, dass dann mein [mm] $\iota(X)$ [/mm] die Gruppe $F$ erzeugt.
Damit habe ich aber Schwierigkeiten; da in der Voraussetzung etwas von "abgeschlossen unter Untergruppenbildung" steht, glaube ich, dass es mir weiterhelfen wird, wenn ich als meine beliebige Gruppe $G$ mein $F$ wähle und [mm] $f=\iota$. [/mm]
Ich habe also folgende Situation:

[mm] $G:=Erz(\iota(X))$. [/mm]
[mm] $\iota:X\rightarrow [/mm] F, [mm] \iota: X\rightarrow [/mm] G$ und es gibt genau einen Homomorphismus [mm] $\overline{f}$, [/mm] der, eingeschränkt auf [mm] $G\subseteq [/mm] F$, die Identität ist. Ich muss zeigen, dass dann $F=G$ gilt.
Ich habe mir versucht, einen Homomorphismus zu konstruieren und dann zu zeigen, dass er injektiv ist. Leider ist mir das nicht gelungen..
Bin ich auf dem richtigen Weg?
Andere Vorschläge?

Würde mich sehr über eure Hilfe freuen.

        
Bezug
Freiheit Gruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:25 Mi 13.03.2013
Autor: hippias


> Zeigen Sie, dass, wenn [mm]\mathcal{C}[/mm] abgeschlossen unter
> Untergruppenbildung ist, eine Gruppe, die frei bzgl.
> Definition 1 ist, auch frei bzgl. Definition 2 ist.
>  Definition 1: Sei [mm]X[/mm] eine Menge und [mm]\mathcal{C}[/mm] eine Klasse
> von Gruppen. [mm]F\in\mathcal{C}[/mm] mit einer Abbildung
> [mm]\iota:X\rightarrow F[/mm] heißt [mm]\mathcal{C}[/mm]-frei über [mm]X[/mm], wenn
> [mm]\forall G\in\mathcal{C}\forall f:X\rightarrow G[/mm] es genau
> einen Homomorphismus [mm]\overline{f}:F\rightarrow G[/mm] mit
> [mm]f=\overline{f}\circ\iota[/mm] gibt.
>  
> Definition 2: Sei [mm]X[/mm] eine Menge und [mm]\mathcal{C}[/mm] eine Klasse
> von Gruppen. [mm]F\in\mathcal{C}[/mm] mit einer Abbildung
> [mm]\iota:X\rightarrow F[/mm] heißt [mm]\mathcal{C}[/mm]-frei über [mm]X[/mm], wenn
> 1) [mm]F[/mm] von [mm]\iota(X)[/mm] erzeugt wird und
>  2) [mm]\forall G\in\mathcal{C}\forall f:X\rightarrow G[/mm] es
> einen Homomorphismus [mm]\overline{f}:F\rightarrow G[/mm] mit
> [mm]f=\overline{f}\circ\iota[/mm] gibt.
>  
> Um die Implikation zu beweisen, muss ich also zeigen, dass
> wenn es genau einen solchen Homomorphismus gibt, dass dann
> mein [mm]\iota(X)[/mm] die Gruppe [mm]F[/mm] erzeugt.
>  Damit habe ich aber Schwierigkeiten; da in der
> Voraussetzung etwas von "abgeschlossen unter
> Untergruppenbildung" steht,

[mm] $\mathcal{C}$ [/mm] heisst abgeschlossen bezueglich Untergruppenbildung, wenn fuer alle [mm] $G\in \mathcal{C}$ [/mm] gilt, dass auch jede Untergruppe von $G$ in [mm] $\mathcal{C}$ [/mm] enthalten ist.

> glaube ich, dass es mir
> weiterhelfen wird, wenn ich als meine beliebige Gruppe [mm]G[/mm]
> mein [mm]F[/mm] wähle und [mm]f=\iota[/mm].
>  Ich habe also folgende Situation:
>  
> [mm]G:=Erz(\iota(X))[/mm].
>  [mm]\iota:X\rightarrow F, \iota: X\rightarrow G[/mm] und es gibt
> genau einen Homomorphismus [mm]\overline{f}[/mm], der,
> eingeschränkt auf [mm]G\subseteq F[/mm], die Identität ist. Ich
> muss zeigen, dass dann [mm]F=G[/mm] gilt.
>  Ich habe mir versucht, einen Homomorphismus zu
> konstruieren und dann zu zeigen, dass er injektiv ist.
> Leider ist mir das nicht gelungen..
>  Bin ich auf dem richtigen Weg?
>  Andere Vorschläge?
>  
> Würde mich sehr über eure Hilfe freuen.

Wegen [mm] $G\leq [/mm] F$ und der Abgeschlossenheit ist [mm] $G\in \mathcal{C}$. [/mm] Weise nach, dass das Paar $(G, [mm] \iota)$ [/mm] auf Definition 1 erfuellt:

Sei [mm] $Y\in \mathcal{C}$ [/mm] und [mm] $g:X\to [/mm] Y$. Die Existenz des Homomorphismus folgt durch Einschraenkung [mm] $\bar{g}$ [/mm] von $F$. Ist [mm] $\gamma:G\to [/mm] Y$ ein weiterer solcher Homomorphismus, also $f= [mm] \gamma\circ \iota$, [/mm] so ist [mm] $\gamma\circ\bar{f}\circ \iota= \iota$, [/mm] also wegen der Eindeutigkeit [mm] $\bar{g}= \gamma\circ \bar{f}$. [/mm] Wegen [mm] $\bar{f}_{\vert_{G}}= [/mm] id$ folgt die Gleichheit.

Nun muesstest Du Dir einen schoenen Homomorphismus [mm] $:G\to [/mm] F$ basteln koennen, der Dir die Gleichheit liefert.


Bezug
                
Bezug
Freiheit Gruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:50 Fr 15.03.2013
Autor: ehjcuioe34

Vielen Dank für deine Hinweise!
Dieser Homomorphismus wird die Identität sein. Ich glaube ich verstehe die Lösung jetzt! Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de