www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstige Transformationen" - Frenet Formeln
Frenet Formeln < Sonstige < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Frenet Formeln: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:36 Di 07.12.2010
Autor: Kuriger

Hallo

Ich muss mit der Frenetformeln diverse grössen berechnen.

Dasa ging eigentlich soweit so gut, bis zur Torsion

Sorry kann das zeugs hie rnicht darstellen, da ich die zeichen wie Torsion nicht kenne....

r(t) = [mm] \vektor{sin(2t) \\cos(2t) \\ \wurzel{5} t} [/mm]

[Dateianhang nicht öffentlich]

Ich erhalte dann

Torsion = [mm] \vektor{\bruch{-2*\wurzel{5}}{9} \\ \bruch{-2\wurzel{5}}{9} \\ 0} [/mm]

Doch ich sehe nicht wie dann Torsion = [mm] \bruch{-2*\wurzel{5}}{9} [/mm] rauskommt


In der Musterlösung steht folgendes:
[Dateianhang nicht öffentlich]

Also ich sehe nicht, wie der letzte Schritt gemacht wird.



Danke, Gruss Kuriger

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Anhang Nr. 2 (Typ: jpg) [nicht öffentlich]
        
Bezug
Frenet Formeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:46 Di 07.12.2010
Autor: fencheltee


> Hallo
>  
> Ich muss mit der Frenetformeln diverse grössen berechnen.
>  
> Dasa ging eigentlich soweit so gut, bis zur Torsion
>  
> Sorry kann das zeugs hie rnicht darstellen, da ich die
> zeichen wie Torsion nicht kenne....

[mm] \tau [/mm]
oder auch:
wie die faulheit siegte

>  
> Also ich sehe nicht, wie der letzte Schritt gemacht wird.
>  
>
>
> Danke, Gruss Kuriger

Bezug
                
Bezug
Frenet Formeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:00 Di 07.12.2010
Autor: Kuriger

Hallo

Wusste echt nicht, dass das Tau heisst. Aber eben grundsätzlich gings ja nur um den letzten Schritt, da macht es wenig Sinn wenn ich einen ganzen Abend alles abtippe.

Gruss Kuriger

Bezug
        
Bezug
Frenet Formeln: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Di 07.12.2010
Autor: MathePower

Hallo Kuriger,

> Hallo
>  
> Ich muss mit der Frenetformeln diverse grössen berechnen.
>  
> Dasa ging eigentlich soweit so gut, bis zur Torsion
>  
> Sorry kann das zeugs hie rnicht darstellen, da ich die
> zeichen wie Torsion nicht kenne....
>  
> r(t) = [mm]\vektor{sin(2t) \\cos(2t) \\ \wurzel{5} t}[/mm]
>  

>  
> Ich erhalte dann
>  
> Torsion = [mm]\vektor{\bruch{-2*\wurzel{5}}{9} \\ \bruch{-2\wurzel{5}}{9} \\ 0}[/mm]
>  
> Doch ich sehe nicht wie dann Torsion =
> [mm]\bruch{-2*\wurzel{5}}{9}[/mm] rauskommt
>  
>
> In der Musterlösung steht folgendes:
>  [Dateianhang nicht öffentlich]
>  
> Also ich sehe nicht, wie der letzte Schritt gemacht wird.
>  


Aus der Gleichung

[mm]\bruch{dB^{\*}}{ds}\left(s\right)=-\tau*P^{\*}\left(s\right)[/mm]

geht hervor, daß [mm]\tau[/mm] ein Skalar ist, da [mm]\bruch{dB^{\*}}{ds}\left(s\right), \ P^{\*}\left(s\right)[/mm] Vektoren sind.


>
>
> Danke, Gruss Kuriger


Gruss
MathePower

Bezug
                
Bezug
Frenet Formeln: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:53 Mi 08.12.2010
Autor: Kuriger

Hallo Mathepower

Danke für die Antwort, nun ist es klar

gruss Kuriger

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstige Transformationen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de