www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Für welche x konvergiert Reihe
Für welche x konvergiert Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Für welche x konvergiert Reihe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 04:03 So 07.08.2011
Autor: kushkush

Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Aufgabe
Für welche $x\in \IR$ konvergiert die Reihe $\sum _{n\in \IN} \frac{x^{2n}}{1+x^{4n}}$


Hallo,


für $x=1$ divergiert diese Reihe sicher!


Für $x>1$ konvergiert sie wegen:
$\forall x > 1 , \forall \epsilon > 0 \exists N \in \IN :$
$0\le a_{n}:= \sum \frac{x^{2n}}{1+x^{4n}} \le \sum \frac{x^{2n}}{x^{4n}} = \sum \frac{1}{x^{2n}} \le \sum \frac{1}{n^{2}} < \epsilon \ \forall m\ge n \ge N$

wobei $\sum \frac{1}{n^{2}$ nach dem Integraltestsatz : $\int_{1}^{\infty} \frac{1}{n^{2}} dn$ konvergiert und eine Majorante für die Majorante von $a_{n}$ ist.


Für $x < 1 $:

ist es eine Nullfolge sicher wegen $lim _{n\rightarrow \infty } |x|^{n} \rightarrow 0$ für $|x|<1$. Dann kann man abschätzen mit einer geometrischen Reihe!
$\forall x< 1, \epsilon > 0  \ \exists N \in \IN: $
$0\le a_{n} \le \sum \frac{x^{2n}}{1} \le \sum x^{n} = \frac{1}{1-x} $

also konvergent


Stimmt das sO?



Bin für jegliche Hilfestellung dankbar.




Gruss
kushkush

        
Bezug
Für welche x konvergiert Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 05:52 So 07.08.2011
Autor: Teufel

Hi!

Jup, ist richtig. Den Teil für x>1 kannst du auch einfacher so machen:

[mm] \summe_{}^{}\frac{x^{2n}}{1+x^{4n}}\le\summe_{}^{}\frac{x^{2n}}{x^{4n}}=\summe_{}^{}\frac{1}{x^{2n}}=\summe_{}^{}(\frac{1}{x^2})^n. [/mm] Nun ist wegen x>1 auch [mm] x^2>1 [/mm] und damit [mm] \frac{1}{x^2}<1. [/mm] Dann hast du auch hier die geometrische Reihe als Majorante.

Dann musst du noch eine Bemerkung zu negativen x schreiben, was aber nicht schwierig sein sollte.

Bezug
                
Bezug
Für welche x konvergiert Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:51 So 07.08.2011
Autor: kushkush

Hallo Teufel,


da $2n$ und $4n$ gerade gilt [mm] $x^{2n}>0$ [/mm] und [mm] $x^{4n}>0$ [/mm] mit $x<0$.


> jup

> Alternative

Danke !!


Gruss
kushkush

Bezug
                        
Bezug
Für welche x konvergiert Reihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:35 So 07.08.2011
Autor: Teufel

Hi!

Kein Problem. genau, also ob du nun x oder -x einsetzt ist egal, weil 2n und 4n immer gerade sind. Daher konvergiert also die Reihe für alle reellen Zahlen außer 1 und -1.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de