www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Fundamentalsatz der Algebra komplex
Fundamentalsatz der Algebra komplex < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fundamentalsatz der Algebra komplex: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:16 Mo 28.11.2011
Autor: racy90

hallo
ich hab ein polynom p(x)= [mm] x^4+17 [/mm] gegebenen und soll es als Produkt von Linearfaktoren darstellen

ich hab nun die vier Lösungen.berechnet mit [mm] \wurzel[4]{17};/pi/4 [/mm]  und dann die anderen 3Lösungen um 90grad verschieden

nur so kann.ich das doch.nicht angeben oder

        
Bezug
Fundamentalsatz der Algebra komplex: Antwort
Status: (Antwort) fertig Status 
Datum: 10:34 Mo 28.11.2011
Autor: fred97


> hallo
> ich hab ein polynom p(x)= [mm]x^4+17[/mm] gegebenen und soll es als
> Produkt von Linearfaktoren darstellen
>  
> ich hab nun die vier Lösungen.berechnet mit
> [mm]\wurzel[4]{17};/pi/4[/mm]

Was ist das denn ?

>  und dann die anderen 3Lösungen um
> 90grad verschieden
>
> nur so kann.ich das doch.nicht angeben oder

Schreib mal die 4 Lösungen [mm] x_1,...,x_4 [/mm] ordentlich auf. Dann ist

          [mm] x^4+17=\produkt_{j=1}^{4}(x-x_j) [/mm]

FRED


Bezug
                
Bezug
Fundamentalsatz der Algebra komplex: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:48 Mo 28.11.2011
Autor: racy90

Sorry hatte es am Handy geschrieben ..

Ich habe mir alle vierten Wurzeln mittels dieser Formel berechnet:

[mm] zj=[\wurzel[n]{R},\bruch{\gamma}{n}+\bruch{2\pi j}{n}] j\in{0,1....,n-1} [/mm]

Hoffe es ist nun klarer!

wie bekomme ich das nun in die Form das ich es mit dem Fundamentalsatz der Algebra angeben kann?

Bezug
                        
Bezug
Fundamentalsatz der Algebra komplex: Antwort
Status: (Antwort) fertig Status 
Datum: 06:44 Di 29.11.2011
Autor: fred97


> Sorry hatte es am Handy geschrieben ..
>  
> Ich habe mir alle vierten Wurzeln mittels dieser Formel
> berechnet:
>  
> [mm]zj=[\wurzel[n]{R},\bruch{\gamma}{n}+\bruch{2\pi j}{n}] j\in{0,1....,n-1}[/mm]
>  
> Hoffe es ist nun klarer!

nein.


>  
> wie bekomme ich das nun in die Form das ich es mit dem
> Fundamentalsatz der Algebra angeben kann?

t

          $ [mm] x^4+17=\produkt_{j=1}^{4}(x-x_j) [/mm] $

FRED


Bezug
                                
Bezug
Fundamentalsatz der Algebra komplex: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:56 Di 29.11.2011
Autor: racy90

das is dann schon klar [mm] x^4+17=\produkt_{j=1}^{4}(x-x_j) [/mm] aber ich kann doch meine Nullstellen nicht in Polarkoordinaten angeben,so wie ich es gemacht habe

Bezug
                                        
Bezug
Fundamentalsatz der Algebra komplex: Antwort
Status: (Antwort) fertig Status 
Datum: 09:44 Di 29.11.2011
Autor: fred97


> das is dann schon klar [mm]x^4+17=\produkt_{j=1}^{4}(x-x_j)[/mm]
> aber ich kann doch meine Nullstellen nicht in
> Polarkoordinaten angeben,so wie ich es gemacht habe

Warum denn nicht ?

FRED


Bezug
                                                
Bezug
Fundamentalsatz der Algebra komplex: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 29.11.2011
Autor: racy90

das heißt etwa so : [mm] x^4+17 =(x-[\wurzel[4]{17};\bruch{\pi}{4}])(x-x1)(x-x2)(x-x3) [/mm]

und für die anderen 3 Lösungen analog oder?

Bezug
                                                        
Bezug
Fundamentalsatz der Algebra komplex: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Di 29.11.2011
Autor: leduart

hallo
du solltest die [mm] z_i [/mm] entweder in der Form a+bi oder als [mm] r*\e^{i\phi} [/mm] angeben nicht als Paar [mm] (r,\phi) [/mm] da das zwar nicht falsch aber sehr unüblich ist. wenn man aber bei euch üblicherweise  etwa [mm] z=(5,\pi/3) [/mm] schreibt, dann eben so.
gruss leduart

Bezug
                                                                
Bezug
Fundamentalsatz der Algebra komplex: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:08 Di 29.11.2011
Autor: racy90

Danke !!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de