www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Funktion als Sup definiert
Funktion als Sup definiert < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion als Sup definiert: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:27 Di 17.01.2012
Autor: marianne88

Guten Abend

Als ich einen Beweis gelesen habe, stutzte ich an folgender Stelle. Es geht um einen Beweis in der Wahrscheinlichkeitstheorie. Wenn wir eine Verteilungsfunktion gegeben haben, also insbesondere eine monotone rechtseitigstetige Funktion, dann definieren wir

[mm] $$X(\omega):=\sup\{y\in \IR | F(y)< \omega\}$$ [/mm]

Zwei Fragen habe ich: Wenn wir haben, dass $y< [mm] X(\omega)$, [/mm] dann bedeutet dies ja, dass $ F(y) < [mm] \omega$, [/mm] per Definition von $X$, richtig?

Wenn ich jetzt aber [mm] $y>X(\omega$ [/mm] habe, kann ich dann schliessen, dass $F(y) > [mm] \omega$ [/mm] ist?
Im Beweis wird nämlich extra noch eine zusätliche Menge konstruiert, mit der man dies schliesst. Allerdings sehe ich den Grund dafür nicht. Ich dacht, dass man dies ebenfalls aus der Definition von $X$ schliessen könnte.

Danke für eure Hilfe

Liebe Grüsse

marianne

        
Bezug
Funktion als Sup definiert: Antwort
Status: (Antwort) fertig Status 
Datum: 18:54 Di 17.01.2012
Autor: donquijote


> Guten Abend
>  
> Als ich einen Beweis gelesen habe, stutzte ich an folgender
> Stelle. Es geht um einen Beweis in der
> Wahrscheinlichkeitstheorie. Wenn wir eine
> Verteilungsfunktion gegeben haben, also insbesondere eine
> monotone rechtseitigstetige Funktion, dann definieren wir
>  
> [mm]X(\omega):=\sup\{y\in \IR | F(y)< \omega\}[/mm]
>  
> Zwei Fragen habe ich: Wenn wir haben, dass [mm]y< X(\omega)[/mm],
> dann bedeutet dies ja, dass [mm]F(y) < \omega[/mm], per Definition
> von [mm]X[/mm], richtig?

ja, folgt aus der Monotonie von F

>  
> Wenn ich jetzt aber [mm]y>X(\omega[/mm] habe, kann ich dann
> schliessen, dass [mm]F(y) > \omega[/mm] ist?
>  Im Beweis wird nämlich extra noch eine zusätliche Menge
> konstruiert, mit der man dies schliesst. Allerdings sehe
> ich den Grund dafür nicht. Ich dacht, dass man dies
> ebenfalls aus der Definition von [mm]X[/mm] schliessen könnte.

Wenn F auf einem Teilintervall [a,b) konstant ist, d.h. [mm] F(y)=\omega [/mm] für [mm] y\in[a,b) [/mm] und [mm] F(y)<\omega [/mm] für y<a,  dann ist [mm] X(\omega)=a. [/mm] In diesem Fall gilt für a<y<b
[mm] y>X(\omega), [/mm] aber nicht [mm] F(y)>\omega [/mm]

>  
> Danke für eure Hilfe
>  
> Liebe Grüsse
>  
> marianne


Bezug
        
Bezug
Funktion als Sup definiert: Antwort
Status: (Antwort) fertig Status 
Datum: 19:33 Di 17.01.2012
Autor: Marcel

Hallo,

> Guten Abend
>  
> Als ich einen Beweis gelesen habe, stutzte ich an folgender
> Stelle. Es geht um einen Beweis in der
> Wahrscheinlichkeitstheorie. Wenn wir eine
> Verteilungsfunktion gegeben haben, also insbesondere eine
> monotone rechtseitigstetige Funktion, dann definieren wir
>  
> [mm]X(\omega):=\sup\{y\in \IR | F(y)< \omega\}[/mm]
>  
> Zwei Fragen habe ich: Wenn wir haben, dass [mm]y< X(\omega)[/mm],
> dann bedeutet dies ja, dass [mm]F(y) < \omega[/mm], per Definition
> von [mm]X[/mm], richtig?
>  
> Wenn ich jetzt aber [mm]y>X(\omega)[/mm] habe, kann ich dann
> schliessen, dass [mm]F(y) > \omega[/mm] ist?

kurz: Nein. Man kann aber für $y > [mm] X(\omega)=\sup\{r \in \IR: F(r) < \omega\}$ [/mm] sagen, dass für jedes $0< [mm] \epsilon [/mm] < [mm] y-X(\omega)$ [/mm] sicherlich
$$F(y [mm] \pm \epsilon) \ge \omega\,.$$ [/mm]

Dass Gleichheit gilt, kannst Du nicht einfach ausschließen - insbesondere auch nicht bei [mm] $\epsilon \to 0\,.$ [/mm] Und selbst wenn für jedes [mm] $\epsilon$ [/mm] wie oben Ungleichheit gelten würde, könnte bei [mm] $\epsilon \to [/mm] 0$ immer noch [mm] $F(y)=\omega$ [/mm] folgen.

Was aber sicher klar ist, ist, dass nicht $F(y) < [mm] \omega$ [/mm] gelten kann - andernfalls wäre [mm] $X(\omega)$ [/mm] ja keine obere Schranke für [mm] $M:=\{r \in \IR: F(r) < \omega\}$ [/mm] gewesen: es wäre ja $y [mm] \in [/mm] M$ und $y > [mm] X(\omega)\,.$ [/mm] Aber die Erkenntniss $F(y) [mm] \ge \omega$ [/mm] besagt nicht automatisch, dass $F(y) > [mm] \omega\,.$ [/mm]

Beachte: Es gilt $a < b [mm] \Rightarrow [/mm] a [mm] \le b\,,$ [/mm] aber NICHT $a [mm] \le [/mm] b [mm] \Rightarrow [/mm] a < [mm] b\,.$ [/mm]

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de