www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Funktion auflösen
Funktion auflösen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion auflösen: (x^3) + (x^2) = 2 auflösen
Status: (Frage) beantwortet Status 
Datum: 15:54 So 19.02.2012
Autor: Matritze

Aufgabe
Löse folgende Aufgaben nach x auf, ohne einen Taschenrechner zu benutzen:

1) [mm] (x^3) [/mm] + [mm] (x^2) [/mm] = 2

2)  [mm] (-1/216)(x^3) [/mm] + [mm] (1/12)(x^2) [/mm] = 2

Hallo,

wie löse ich folgende Aufgaben nach x auf? Ich finde hier keinen Ansatz bzw. bleibe immer irgendwo stecken.

Wenn ich z.B. bei 1) [mm] x^2 [/mm] ausklammere, dann muss ich später eine Wurzel ziehen, unter der auch x drinnen ist.

Wie löst man solche Aufgaben, ohne den Taschenrechner zu benutzen?

Vielen Dank!

Gruß,
Matritze



        
Bezug
Funktion auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:07 So 19.02.2012
Autor: Fulla

Hallo Matritze,

ich denke nicht, dass du hier Äquivalenzumformungen machen sollst. Du sollst die Lösungen eher durch "Raten" oder "genaues Hinschauen" finden.

> 1) [mm](x^3)[/mm] + [mm](x^2)[/mm] = 2

Welche Zahl erfüllt denn diese Gleichung? Gibt es noch andere?

> 2)  [mm](-1/216)(x^3)[/mm] + [mm](1/12)(x^2)[/mm] = 2

Damit hier am Ende 2 rauskommt, müssen die Brüche weg. Gibt es eine Zahl, so dass [mm]-\frac{1}{216}x^3[/mm] eine ganze Zahl ist? Ist dann auch [mm]\frac{1}{12}x^2[/mm] eine ganze Zahl, bzw. kommt am Ende wirklich 2 raus?


Lieben Gruß,
Fulla


Bezug
                
Bezug
Funktion auflösen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:29 So 19.02.2012
Autor: Matritze

Hallo,

bei 1) ist das ja natürlich ganz klar "1". Aber woher weiß man, dass keine andere Zahl funktioniert?

Bei 2 ist eine der Lösungen "6". Aber ehrlich gesagt finde ich dieses "genau hinschauen und probieren" nicht immer hilfreich. Manchmal lässt sich einfach keine Lösung sofort ablesen, sondern man muss es durch Äquivalenzumformungen errechnen.

Wie würde man denn die anderen Lösungen für die 2. Aufgabe errechnen?

Gruß,
Matritze

Bezug
                        
Bezug
Funktion auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 So 19.02.2012
Autor: Steffi21

Hallo

Aufgabe (1):
betrachte die Funktion [mm] f(x)=x^3+x^2-2 [/mm] diese Funktion hat nur die Nullstelle [mm] x_0=1, [/mm] um zu erkennen, dass es keine weitere Nullstelle gibt, kannst du z.B. die Extrempunkte berechnen, die an den Stellen 0 und [mm] -\bruch{2}{3} [/mm] liegen,
Aufgabne(2):
x=6 ist korrekt

[mm] -\bruch{1}{216}*x^3+\bruch{1}{12}*x^2-2=0 [/mm]

[mm] -x^3+18*x^2-432=0 [/mm]

jetzt Polynomdivision

[mm] (-x^3+18*x^2-432):(x-6)=-x^2+12x+72 [/mm]

die quadratische Gleichung sollte kein Problem sein

Steffi


Bezug
                        
Bezug
Funktion auflösen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:53 Mo 20.02.2012
Autor: fred97

Zu 1):

[mm] x^3+x^2-2=x^3-1+x^2-1= (x-1)(x^2+x+1)+(x-1)(x+1) [/mm]

[mm] =(x-1)(x^2+2x+1+1)=(x-1)((x+1)^2+1) [/mm]

Der 2. Faktor rechts ist immer  [mm] \ge [/mm] 1.

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de