Funktion aus asympthoden < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:00 Fr 18.03.2005 | Autor: | zugger |
hi,
zur bearbeitung einer aufgabe wäre es praktisch, wenn ich aus zwei bekannten asymptoden:
y=x für x -> unendlich und
y=-40 für x -> minus unendlich
eine funktion erstellen kann.
hat jm ahnung wie ich das am besten anstelle?
mfg michael
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo.
Also dir ist schon klar, daß die Lösung nicht eindeutig ist, oder?
Man kann sich leicht klarmachen, daß dies von keiner gebrochenrationalen Funktion erfüllt wird.
Deswegen müssen wir etwas basteln.
Nehmen wir beispielsweise die Funktionen [mm] $\varphi(x):=\frac{e^x}{e^x+e^{-x}}$ [/mm] und [mm] $\rho(x):=\frac{e^{-x}}{e^x+e^{-x}}$.
[/mm]
Phi hat als Grenzwert für [mm] $x\to-\infty$ [/mm] 0 und für [mm] $x\to\infty$ [/mm] den Grenzwert 1. Die Funktion Rho ist die Spiegelung von Phi an der y-Achse.
Dann ist relativ leicht ersichtlich, daß die Funktion [mm] $f(x):=x*\varphi(x)-40\rho(x)=\frac{xe^x-40e^{-x}}{e^x+e^{-x}}$ [/mm] das gewünschte erfüllt.
Gruß,
Christian
|
|
|
|
|
Hallo zugger
spontan fällt mir dazu ein die 2 Asymptoten als
die einer Hyperbel in allgemeiner Lage anzunehmen,
und für die Funktion nur einen Ast der Hyperbel
wobei es allerding unendlich viele Lösungen gibt.
Wenn die Asmptoten die der Hyperbel sind
dann ist das Produkt der Abstände von diesen konstant
also
(y+40)*(y-x) = k
bei
der Auflösung nach y mußt Du Dir nur noch den richtigen Ast der Hyperbel
aussuchen.
|
|
|
|