www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Funktion bestimmen
Funktion bestimmen < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:27 Do 11.11.2010
Autor: Seestern9

Aufgabe
Bestimme alle ganzrationalen Funktionen 3. Grades, deren Graphen punktsymmetrisch zum Ursprung sind, einen Tiefpunkt bei x=1 haben und durch den Punkt A(2/2) gehen.

Wie rechne ich das mit der Symmetrie und dem Tiefpunkt aus?
Ich hab ja dann f(x) = [mm] ax^3+bx²+cx+d [/mm]
und mit A(2/2):     2 = 8a+4b+2c+d
aber wie bekomm ich die anderen Gleichungen?

        
Bezug
Funktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:40 Do 11.11.2010
Autor: Steffi21

Hallo,


- "Funktion ist punktsymmetrisch", überlege dir, was das für die jeweiligen Exponenten bedeutet, als Hinweis, du hast in deiner Funktion gerade und ungerade Exponenten
- "punktsymmetrisch zum Ursprung" bedeutet, der Punkt (0;0) gehört zur Funktion
- die Gleichung für A ist im Prinzip richtig, betrachte aber noch einmal den 1. Hinweis
- "einen Tiefpunkt bei x=1" bedeutet f'(1)=0

Steffi

Bezug
                
Bezug
Funktion bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:44 Do 11.11.2010
Autor: Seestern9

das heißt dann dass alle Exponenten ungerade sein müssen
muss ich das dann bei der Gleichung von A(2/2) auch machen?


Bezug
                        
Bezug
Funktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:49 Do 11.11.2010
Autor: schachuzipus

Hallo Seestern9,

bitte Fragen auch als Fragen stellen, nicht als Mitteilungen!

> das heißt dann dass alle Exponenten ungerade sein müssen [ok]
> muss ich das dann bei der Gleichung von A(2/2) auch
> machen?

Was meinst du mit "auch machen" ?

Alle Exponenten ungerade bedeutet doch, [mm]f(x)=ax^3+cx[/mm]

Nun ist [mm]A(\red{x}/\blue{f(x)})=(\red{2}/\blue{2})[/mm] Punkt des Graphen von f, also [mm]\blue{2}=a\cdot{}\red{2}^3+c\cdot{}\red{2}[/mm]

Die andere Gleichung, die du brauchst, hat Steffi dir oben verraten: $f'(1)=0$

Übertrage das in eine konkrete Gleichung ...

Gruß

schachuzipus

>


Bezug
                                
Bezug
Funktion bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:02 Do 11.11.2010
Autor: Seestern9

also hab ich jetzt:
2 = 8a + 4b + 2c
0 = d
1 = 3a + 2b +c

dann kommt glaub ich f(x) = 0,5x² raus
kann das sein?

Bezug
                                        
Bezug
Funktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:07 Do 11.11.2010
Autor: fred97


> also hab ich jetzt:
>  2 = 8a + 4b + 2c
>  0 = d
>  1 = 3a + 2b +c


??????????????????????????????????????????????

>  
> dann kommt glaub ich f(x) = 0,5x² raus
>  kann das sein?


Nie und nimmer.



Hast Du gelesen, was schachuzipus geschrieben hat ? Wohl kaum !

Deine gesuchte Funktion hat die Gestalt  [mm] $f(x)=ax^3+cx$ [/mm]

Es ist f(2)=2  und f'(1)=0


FRED


Bezug
                                
Bezug
Funktion bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:23 Do 11.11.2010
Autor: Seestern9

f(x) = [mm] 1/3x^3 [/mm]  

und c ist 0

?

Bezug
                                        
Bezug
Funktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:32 Do 11.11.2010
Autor: fred97


> f(x) = [mm]1/3x^3[/mm]  
>
> und c ist 0
>  
> ?

Rechnest Du oder stocherst Du im Nebel ?

Wir hatten f(2)=2 und f'(1)=0

Das liefert:

                  2=8a+2c  und 0=3a+c

FRED


Bezug
                                                
Bezug
Funktion bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:51 Do 11.11.2010
Autor: Seestern9

ich hatte 3a + c = 1


aber mit 3a + c = 0
und 8a +2c = 2
kann ich ja nach a auflösen und bekomm a = (2 - 2c)/8

a in 3a + c = 0 gibt dann c = -3

c in a gibt a = -0,5




Bezug
                                                        
Bezug
Funktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:03 Do 11.11.2010
Autor: schachuzipus

Bitte Fragen als Fragen stellen!!!!!!!!!!!!


> ich hatte 3a + c = 1
>
>
> aber mit 3a + c = 0
> und 8a +2c = 2
> kann ich ja nach a auflösen und bekomm a = (2 - 2c)/8 [ok]

Umständlich, aber richtig!

>
> a in 3a + c = 0 gibt dann c = -3 [ok]

>
> c in a gibt a = -0,5 [notok]

Verrechnet, rechne vor!

Gruß

schachuzipus


Bezug
                                                                
Bezug
Funktion bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:13 Do 11.11.2010
Autor: Seestern9

a = (2 - 2c) / 8
(2 - 2*(-3)) / 8
(2 + 6) / 8
1  

Bezug
                                                                        
Bezug
Funktion bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:20 Do 11.11.2010
Autor: Steffi21

Hallo, ich interpretiere mal a=1, korrekt, oder so

(1) 2=8a+2c
    1=4a+c
    c=1-4a
(2) 0=3a+c
    c=-3a


Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de