www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - Funktion durch ganze Zahlen
Funktion durch ganze Zahlen < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion durch ganze Zahlen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 20:20 Mo 27.07.2009
Autor: Lybius

Aufgabe
f(x) = 851 floor(x / 100) + 41 floor((x - 100 floor(x / 100)) / 10) + 50 floor(x / 100)² + 10 floor((x - 100 floor(x / 100)) / 10) floor(x / 100) + 5 floor((x - 100 floor(x / 100)) / 10)² + 10 (x / 10 - floor(x / 10)) floor(x / 100) + floor((x - 100 floor(x / 100)) / 10) 10 (x / 10 - floor(x / 10)) + (10 (x / 10 - floor(x / 10)) + (10 (x / 10 - floor(x / 10)))²) / 2

Hallo,
ich habe ein Problem, bei dem ich leider an meine Grenzen stoße.
Es handelt sich dabei nicht um eine besondere Aufgabenstellung, oder um Stoff dieses Jahres, aber wir hatten Latein und mir war langweilig, also hab ich versucht einen Ansatz zu finden, um die Quersummen aller Seitenzahlen eines Buches zusammenzuzählen.

Herausgekommen ist dabei eine lange Funktion, mit vielen Modulodivisionen oder alt. floor Operationen.
Der Graph verläuft sprunghaft, doch die Funktion sollte natürlich nur für natürliche Zahlen von 0 bis 999 definiert sein,
deshalb dachte ich mir, man könnte die ModDiv aus der Formel eliminieren, indem man eine Funktion findet, die genau durch diese Punkte geht.
Also im Prinzip eine Funktion aus der Folge einer Funktion.

Ich hab das Gefühl ich bin im falschen Forum, aber das hier ist ja auch eins von der ganz umständlichen Sorte.
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktion durch ganze Zahlen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:23 Di 28.07.2009
Autor: felixf

Hallo!

> f(x) = 851 floor(x / 100) + 41 floor((x - 100 floor(x /
> 100)) / 10) + 50 floor(x / 100)² + 10 floor((x - 100
> floor(x / 100)) / 10) floor(x / 100) + 5 floor((x - 100
> floor(x / 100)) / 10)² + 10 (x / 10 - floor(x / 10))
> floor(x / 100) + floor((x - 100 floor(x / 100)) / 10) 10 (x
> / 10 - floor(x / 10)) + (10 (x / 10 - floor(x / 10)) + (10
> (x / 10 - floor(x / 10)))²) / 2
>
>  Hallo,
>  ich habe ein Problem, bei dem ich leider an meine Grenzen
> stoße.
>
>  Es handelt sich dabei nicht um eine besondere
> Aufgabenstellung, oder um Stoff dieses Jahres, aber wir
> hatten Latein und mir war langweilig, also hab ich versucht
> einen Ansatz zu finden, um die Quersummen aller
> Seitenzahlen eines Buches zusammenzuzählen.

Um das etwas mathematischer auszudruecken: Du willst also zu $x [mm] \in \{ 1, \dots, 999 \}$ [/mm] die Summe [mm] $\sum_{n=1}^x [/mm] qs(n)$ berechnen, wobei $qs(n)$ die Quersumme der natuerlichen Zahl $n$ ist?

> Herausgekommen ist dabei eine lange Funktion, mit vielen
> Modulodivisionen oder alt. floor Operationen.
>  Der Graph verläuft sprunghaft, doch die Funktion sollte
> natürlich nur für natürliche Zahlen von 0 bis 999
> definiert sein,
>  deshalb dachte ich mir, man könnte die ModDiv aus der
> Formel eliminieren, indem man eine Funktion findet, die
> genau durch diese Punkte geht.
>  Also im Prinzip eine Funktion aus der Folge einer
> Funktion.

Du kannst ein Polynom vom Grad [mm] $\le [/mm] 1000$ finden, welches genau deine Funktion beschreibt an den gegebenen Werten (naemlich $0, 1, 2, [mm] \dots, [/mm] 999$). Aber das willst du wohl nicht wirklich ;-)

Ich werd jetzt erstmal fuer mich die Funktion herleiten. Dazu verwende ich folgende Notation: zu $n [mm] \in \IN$ [/mm] sei $n = [mm] \sum_{i=0}^\infty n_i 10^i$ [/mm] mit [mm] $n_i \in \{ 0, \dots, 9 \}$; [/mm] die [mm] $n_i$ [/mm] sind eindeutig bestimmt. Damit ist $qs(n) = [mm] \sum_{i=0}^\infty n_i$. [/mm] (In deinem Fall kannst du [mm] $\infty$ [/mm] durch 2 ersetzen, da du jede Zahl zwischen 0 und 999 eindeutig als [mm] $n_0 [/mm] + 10 [mm] n_1 [/mm] + 100 [mm] n_2$ [/mm] schreiben kannst mit den Dezimalziffern [mm] $n_0, n_1, n_2$ [/mm] .)

Es ist also $f(x) = [mm] \sum_{n=1}^x [/mm] qs(n) = [mm] \sum_{n=1}^x \sum_{i=0}^\infty n_i [/mm] = [mm] \sum_{i=0}^\infty \sum_{n=1}^x n_i$. [/mm] Es macht also Sinn, die Ausdruecke der Form $f(x, i) := [mm] \sum_{n=1}^x n_i$ [/mm] zu untersuchen.

Erstmal ist dazu praktisch zu wissen, dass $s(x) := [mm] \sum_{k=0}^x [/mm] k = [mm] \frac{x (x + 1)}{2}$ [/mm] ist (das geht angeblich auf Gauss zurueck).

Fuer $i = 0$ nimmt [mm] $n_i$ [/mm] periodisch die Werte $0, 1, 2, [mm] \dots, [/mm] 8, 9, 0, 1, 2, [mm] \dots, [/mm] 9, 0, [mm] \dots$ [/mm] an. Der Wert von $f(x, 0)$ ist also [mm] $\left\lfloor \frac{x}{10} \right\rfloor \cdot [/mm] s(9) + s(x [mm] \mod [/mm] 10)$. Oder anders gesagt (mit der obigen Notation): $f(x, 0) = [mm] s(x_0) [/mm] + s(9) [mm] \sum_{i=0}^\infty x_{i+1} 10^i$. [/mm]

Fuer $i = 1$ nimmt [mm] $n_i$ [/mm] erst 10-mal den Wert 0, dann 10-mal den Wert 1, ..., dann 10-mal den Wert 9, dann wieder 10-mal den Wert 0 etc. an. Der Wert von $f(x, 1)$ ist also [mm] $\left\lfloor \frac{x}{100} \right\rfloor \cdot [/mm] 10 s(9) + 10 [mm] s(x_1 [/mm] - 1) + [mm] (x_0 [/mm] + 1) [mm] x_1$. [/mm] Oder anders gesagt: $f(x, 1) = [mm] (x_0 [/mm] + 1) [mm] x_1 [/mm] + 10 [mm] s(x_1 [/mm] - 1) + 10 s(9) [mm] \sum_{i=0}^\infty x_{i+2} 10^i$. [/mm]

Fuer $i = 2$ nimmt [mm] $n_i$ [/mm] erst 100-mal den Wert 0 an, dann 100-mal den Wert 1, ... Der Wert von $f(x, 2)$ ist also [mm] $\left\lfloor \frac{x}{1000} \right\rfloor \cdot [/mm] 100 s(9)$ + 100 [mm] s(x_2 [/mm] - 1) + (10 [mm] x_1 [/mm] + [mm] x_0 [/mm] + 1) [mm] x_2$. [/mm] Oder anders gesagt: $f(x, 1) = (10 [mm] x_1 [/mm] + [mm] x_0 [/mm] + 1) [mm] x_2 [/mm] + 100 [mm] s(x_2 [/mm] - 1) + 100 s(9) [mm] \sum_{i=0}^\infty x_{i+3} 10^i$. [/mm]

Fuer allgemeines $i$ gilt $f(x, i) = [mm] \left\lfloor \frac{x}{10^{i+1}} \right\rfloor 10^i [/mm] s(9) + [mm] 10^i s(x_i [/mm] - 1) + [mm] x_i \left( \sum_{j=0}^{i-1} x_i 10^i + 1 \right) [/mm] = [mm] \sum_{j=i+1}^\infty x_j 10^{j-1} [/mm] s(9) + [mm] 10^i s(x_i [/mm] - 1) + [mm] x_i \left( \sum_{j=0}^{i-1} x_i 10^i + 1 \right) [/mm] = [mm] \sum_{j=0}^\infty x_{j+i+1} 10^{j+i} [/mm] s(9) + [mm] 10^i s(x_i [/mm] - 1) + [mm] x_i \left( \sum_{j=0}^{i-1} x_i 10^i + 1 \right)$, [/mm] und man erhaelt $f(x) = [mm] \sum_{i=0}^\infty \left( \sum_{j=i+1}^\infty x_j 10^{j-1} s(9) + 10^i s(x_i - 1) + \sum_{j=0}^{i-1} x_j 10^j x_i + x_i \right) [/mm] = [mm] \sum_{i=0}^\infty \sum_{j=i+1}^\infty x_j 10^{j-1} [/mm] s(9) + [mm] \sum_{i=0}^\infty 10^i s(x_i [/mm] - 1) + [mm] \sum_{i=0}^\infty \sum_{j=0}^{i-1} x_j 10^j x_i [/mm] + [mm] \sum_{i=0}^\infty x_i$. [/mm]

Die auftretenden (Doppel-)Summen im Ergebnis kann man noch etwas weiter umformen, aber wirklich schoen wird das nicht. Ich lass das ganze mal stehen, falls sich jemand dafuer interessiert ;-)

Zur eigentlichen Frage: ich denke, dass man nicht ohne Modulo bzw. ganzzahlige Division (mit Rest wegwerfen) bzw. Floor-Funktion auskommt.

LG Felix


Bezug
                
Bezug
Funktion durch ganze Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:39 Mi 29.07.2009
Autor: Lybius

vielen Dank Felix für deine Bemühungen,
da werd ich noch etwas Zeit brauchen, um das durchzuarbeiten. Nun sind ja zum Glück Ferien. Aber es ist eigentlich ganz logisch.  
Danke matheforum.net

Bezug
                
Bezug
Funktion durch ganze Zahlen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 06:59 Di 04.08.2009
Autor: felixf

Hallo!

> [mm]f(x) = \sum_{i=0}^\infty \sum_{j=i+1}^\infty x_j 10^{j-1} s(9) + \sum_{i=0}^\infty 10^i s(x_i - 1) + \sum_{i=0}^\infty \sum_{j=0}^{i-1} x_j 10^j x_i + \sum_{i=0}^\infty x_i[/mm]

Es ist [mm] $\sum_{i=0}^\infty \sum_{j=i+1}^\infty x_j 10^{j-1} [/mm] s(9) = [mm] \sum_{0 \le i < j} x_j 10^{j-1} [/mm] s(9) = [mm] \sum_{j=1}^\infty \sum_{i=0}^{j-1} x_j 10^{j-1} [/mm] s(9) = [mm] \sum_{j=1}^\infty [/mm] j [mm] x_j 10^{j-1} [/mm] s(9) = [mm] \sum_{i=1}^\infty [/mm] i [mm] x_i 10^{i-1} [/mm] s(9) = [mm] \sum_{i=0}^\infty [/mm] i [mm] x_i 10^{i-1} [/mm] s(9)$ und [mm] $\sum_{i=0}^\infty \sum_{j=0}^{i-1} x_j 10^j x_i [/mm] = [mm] \sum_{0 \le j < i} x_i x_j 10^j [/mm] = [mm] \sum_{j=0}^\infty \sum_{i=j+1}^\infty x_i x_j 10^j [/mm] = [mm] \sum_{i=0}^\infty \sum_{j=i+1}^\infty x_i x_j 10^i$. [/mm]

Damit gilt [mm]f(x) = \sum_{i=0}^\infty i x_i 10^{i-1} s(9) + \sum_{i=0}^\infty 10^i \cdot \frac{1}{2} (x_i^2 - x_i) + \sum_{i=0}^\infty \sum_{j=i+1}^\infty x_i x_j 10^i + \sum_{i=0}^\infty x_i = \sum_{i=0}^\infty [ 1 + 10^{i-1} \cdot 45 i - 10^i \cdot \tfrac{1}{2} + \tfrac{1}{2} 10^i x_i + 10^i \sum_{j=i+1}^\infty x_j] x_i[/mm].

Wenn man nun [mm] $x_3 [/mm] = [mm] x_4 [/mm] = [mm] \dots [/mm] = 0$ setzt, also $x < 1000$, dann vereinfacht sich das zu $f(x) =  [mm] (\tfrac{1}{2} [/mm] + [mm] \tfrac{1}{2} x_0 [/mm] + [mm] x_1 [/mm] + [mm] x_2) x_0 [/mm] + (41 + 5 [mm] x_1 [/mm] + 10 [mm] x_2) x_1 [/mm] + (851 + 50 [mm] x_2) x_2$. [/mm]

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de