www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Geraden und Ebenen" - Funktion finden
Funktion finden < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion finden: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:26 So 16.11.2008
Autor: jos3n

Aufgabe
Eine ganz-rationale Fkt. dritten Grades hat im Punkt (0|0) ein lokales Extremum und an der Stelle -1 die Tangentengleichung y=-2x +1. Berechnen Sie den Funktionsterm.

Also.
Die Funktion sieht so aus:

[mm] f(x)=ax^3 [/mm] + [mm] bx^2 [/mm] + cx + d
[mm] f´(x)=3ax^2 [/mm] + 2bx + c

da die Fkt durch den Nullpunkt geht ist d=0 und f´(0)=0 => c=0

f´(-1)= -2 wegen der Steigung der Tangente

3a-2b=-2 das ist die eine Gleichung für die Bestimmung von a und b und wie komm ich an die 2.??
Würde mich über schnelle Hilfe sehr freuen.

Grüße

        
Bezug
Funktion finden: Antwort
Status: (Antwort) fertig Status 
Datum: 20:35 So 16.11.2008
Autor: schachuzipus

Hallo jos3n,

> Eine ganz-rationale Fkt. dritten Grades hat im Punkt (0|0)
> ein lokales Extremum und an der Stelle -1 die
> Tangentengleichung y=-2x +1. Berechnen Sie den
> Funktionsterm.
>  Also.
>  Die Funktion sieht so aus:
>  
> [mm]f(x)=ax^3[/mm] + [mm]bx^2[/mm] + cx + d
>  [mm]f´(x)=3ax^2[/mm] + 2bx + c
>  
> da die Fkt durch den Nullpunkt geht ist d=0 und f´(0)=0 =>
> c=0
>  
> f´(-1)= -2 wegen der Steigung der Tangente
>  
> 3a-2b=-2 [ok] das ist die eine Gleichung für die Bestimmung von
> a und b und wie komm ich an die 2.??
>  Würde mich über schnelle Hilfe sehr freuen.

Na, die Tangente $y=-2x+1$ und die Funktion f haben doch an der Stelle $x=-1$ einen Berührpunkt $(x,y)=(-1,...)$ gemeinsam ...

>  
> Grüße

zurück! ;-)

schachuzipus


Bezug
                
Bezug
Funktion finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:04 So 16.11.2008
Autor: jos3n

wie bist du denn darauf gekommen?
hab gerade totalen blackout. sry

Grüße

Bezug
                        
Bezug
Funktion finden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:09 So 16.11.2008
Autor: jos3n

oh man bin ich dumm, alles klar! danke

Bezug
                        
Bezug
Funktion finden: Antwort
Status: (Antwort) fertig Status 
Datum: 21:09 So 16.11.2008
Autor: schachuzipus

Hallo nochmal,

> wie bist du denn darauf gekommen?
>  hab gerade totalen blackout. sry

die Gerade $y=-2x+1$ soll doch an der Stelle $x=-1$ Tangente an den Graphen von f sein.

Für $x=-1$ ist $y=-2(-1)+1=3$

Also ist im Punkt $(x,y)=(-1,3)$ der Berührpunkt von y und dem Graphen von f

Damit liegt der Punkt $(-1,3)$ auf dem Graphen von f, also $f(-1)=...=3$

Das ist die fehlende Gleichung

>  
> Grüße


LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de