www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Funktion mit mehreren Variable
Funktion mit mehreren Variable < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion mit mehreren Variable: lokale Extrema
Status: (Frage) beantwortet Status 
Datum: 11:55 So 25.03.2012
Autor: summerlove

Aufgabe
Berechnen Sie die lokalen Extrema der Funktion

f(x,y) = [mm] 4x^{2}*(x^{2} -2)*(y^{2}-4) +y^{2} [/mm]

Hallo,

also wie oben angegeben sollen die lokalen Extrema bestimmt werden, dafür muss ich ja alle meine Punkte ermitteln von der ersten Ableitung.

Mein Problem ist aber, dass ich nur auf die ersten 3 Punkte komme und laut meiner Lösung noch 8 Punkte fehlen. Ich weiß aber nicht wie man darauf kommt.


Ich habe zuerst die Funktion ausgeklammert.

f(x,y) = [mm] 4x^{4}y^{2}-16x^{4}-8x^{2}y^{2}+32x^{2}+y^{2} [/mm]

erste Ableitung

fx = [mm] 16x^{3}y^{2}-64x^{3}-16xy^{2}+64x [/mm]
fy = [mm] 8x^{4}y-16x^{2}y+2y [/mm]

zweite Ableitung

fxx= [mm] 48x^{2}y^{2}-192x^{2}-16y^{2}+64 [/mm]
fyy= [mm] 8x^{4}-16x^{2}+2 [/mm]
fxy= [mm] 32x^{3}y-32xy [/mm]

Bedingung fx=0:   [mm] 16x^{3}y^{2}-64x^{3}-16xy^{2}+64x=0 [/mm]
                              [mm] x^{3}y^{2}-4x^{3}-xy^{2}+4x=0 [/mm]
                              [mm] x*(x^{2}y^{2}-4x^{2}-xy^{2}+4)=0 [/mm]
      
                          also x =0

Bedingung fy=0:   [mm] 8x^{4}y-16x^{2}y+2y=0 [/mm]
                               [mm] 4x^{4}y-8x^{2}y+y=0 [/mm]
                              [mm] y*(4x^{4}-8x^{2}+1)=0 [/mm]

                          also y =0

wenn ich jetzt x =0 in fy einsetze, bekomme ich meinen ersten Punkt
P1 (0,0)

wenn ich y=0 in fx einsetze, bekomme ich meinen zweiten Punkt und dritten Punkt
P2 (1,0)
P3 (-1,0)

Kann mir bitte jemand sagen wie ich weiter machen muss um die 8 weiteren Punkte zu bekommen?

LG Summerlove


        
Bezug
Funktion mit mehreren Variable: Nullstellen von Produkten
Status: (Antwort) fertig Status 
Datum: 12:29 So 25.03.2012
Autor: Infinit

Hallo summerlove,
Dein Ansatz ist okay, auch habe ich keine Rechenfehler finden können. Was Du bisher betrachtest hast, ist der einfache Fall, dass der erste Multiplikand in einem Ausdruck Null wird. Ein Produkt kann aber auch dadurch Null werden, dass einer der Multiplikanden zu Null wird.
Was Du jetzt als nächstes machen musst, ist, die Nullstellen Deiner Ausdrücke, die in den Klammern stehen,  zu finden.
Also
[mm] x^2y^2 - 4 x^2 - xy^2 + 4 = 0 [/mm] und
[mm] 4x^4 - 8x^2 + 1 = 0 [/mm]
Ein kleiner Tipp: Wenn Du bei der zweiten Gleichung [mm] z = x^2 [/mm] setzt, kommst Du wieder auf eine quadratische Gleichung, die einfach zu lösen ist. Danach wieder rücksubstituieren.
Viel Spaß beim Rechnen,
Infinit


Bezug
                
Bezug
Funktion mit mehreren Variable: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:00 So 25.03.2012
Autor: summerlove

Vielen Dank, das mit der Substitution war ein guter Tipp, ich hab das Ergebnis jetzt raus :)

LG Summerlove

Bezug
                        
Bezug
Funktion mit mehreren Variable: lokale Extrema
Status: (Frage) beantwortet Status 
Datum: 14:40 So 25.03.2012
Autor: summerlove

Aufgabe
Berechnen sie die lokalen Extrema der Funktion

f(x,y)= [mm] 4xy^{2}+40xy-8y^{2} [/mm] - [mm] 80y+3x^{3} [/mm]

Hallo,

ich wollte jetzt kein neues Thema aufmachen, das ist jetzt eine andere Aufgabe. Hier komme ich mit Substitution leider nicht weiter.

1.Ableitung

fx = [mm] 4y^{2}+40y+9x^{2} [/mm]
fy= 8xy+40x-16y-80

2.Ableitung

fxx= 18x
fyy= 8x-16
fxy= 8y+40


Bedingung: fx=0:   [mm] 4y^{2}+40y-9x^{2}=0 [/mm]
                               [mm] x^{2} [/mm] = [mm] \bruch{-4y^{2}-40y}{9} [/mm]

Bedingung: fy=0:   8xy+40x-16y-80=0
                              xy+5x-2y-10=0
                              [mm] x^{2}y^{2}+25x^{2}-4y^{2}-100=0 [/mm]

dann hab ich [mm] x^{2} [/mm] = [mm] \bruch{-4y^{2}-40y}{9} [/mm] eingesetzt in fy=0

am Ende bekomme ich [mm] y^{3}+44y^{2}+250y=-225 [/mm]

nun weiß ich aber nicht wie ich weiter vorgehen soll.

LG Summerlove
                            

Bezug
                                
Bezug
Funktion mit mehreren Variable: Antwort
Status: (Antwort) fertig Status 
Datum: 15:44 So 25.03.2012
Autor: MathePower

Hallo summerlove,

> Berechnen sie die lokalen Extrema der Funktion
>  
> f(x,y)= [mm]4xy^{2}+40xy-8y^{2}[/mm] - [mm]80y+3x^{3}[/mm]
>  Hallo,
>  
> ich wollte jetzt kein neues Thema aufmachen, das ist jetzt
> eine andere Aufgabe. Hier komme ich mit Substitution leider
> nicht weiter.
>  
> 1.Ableitung
>  
> fx = [mm]4y^{2}+40y+9x^{2}[/mm]
>  fy= 8xy+40x-16y-80
>  
> 2.Ableitung
>  
> fxx= 18x
>  fyy= 8x-16
>  fxy= 8y+40
>  
>
> Bedingung: fx=0:   [mm]4y^{2}+40y-9x^{2}=0[/mm]
>                                 [mm]x^{2}[/mm] =
> [mm]\bruch{-4y^{2}-40y}{9}[/mm]
>  
> Bedingung: fy=0:   8xy+40x-16y-80=0
>                                xy+5x-2y-10=0
>                                
> [mm]x^{2}y^{2}+25x^{2}-4y^{2}-100=0[/mm]
>  
> dann hab ich [mm]x^{2}[/mm] = [mm]\bruch{-4y^{2}-40y}{9}[/mm] eingesetzt in
> fy=0
>  
> am Ende bekomme ich [mm]y^{3}+44y^{2}+250y=-225[/mm]
>  
> nun weiß ich aber nicht wie ich weiter vorgehen soll.
>  


Versuche die partielle Ableitung von f nach y zu faktorisieren.


> LG Summerlove

>


Gruss
MathePower                                

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de