www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Funktion prüfen
Funktion prüfen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktion prüfen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 Fr 10.08.2007
Autor: Mach17

Aufgabe
Prüfe, ob es eine ganzrationale Funktion vierten Grades mit folgenden eigenschaften gibt:
P(-1|7) ist Tiefpunkt.
An der Stelle 0,5 ist ein Wendepunkt.
Der Punkt T(4|32) liegt auf dem Graphen.

Hallo Leute!
Mein Ansatz:

[mm] f(x)=ax^4+bx^3+cx^2+dx+e [/mm]
[mm] f'(x)=4ax^3+3bx^2+2cx+d [/mm]
[mm] f''(x)=12ax^2+6bx+2c [/mm]
f'''(x)=24ax+6b

f(-1) = 7
f'(-1) = 0
f''(-1) > 0
f''(0,5) = 0
f(4) = 32

So...
Meine Frage ist, ob 4Bedingungen reichen, um die Aufgabe lösen zu können? (oder hab ich eine Bedingung übersehen?)

Wenn mans nicht lösen kann, hat die Aufgabe dann keine oder unendlich viele Lösungen?
Danke schonmal für jede Hilfe!
mfg

        
Bezug
Funktion prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:49 Fr 10.08.2007
Autor: Somebody


> Prüfe, ob es eine ganzrationale Funktion vierten Grades mit
> folgenden eigenschaften gibt:
>  P(-1|7) ist Tiefpunkt.
>  An der Stelle 0,5 ist ein Wendepunkt.
>  Der Punkt T(4|32) liegt auf dem Graphen.
>  Hallo Leute!
>  Mein Ansatz:
>  
> [mm]f(x)=ax^4+bx^3+cx^2+dx+e[/mm]
>  [mm]f'(x)=4ax^3+3bx^2+2cx+d[/mm]
>  [mm]f''(x)=12ax^2+6bx+2c[/mm]
>  f'''(x)=24ax+6b
>  
> f(-1) = 7
>  f'(-1) = 0
>  f''(-1) > 0

>  f''(0,5) = 0
>  f(4) = 32
>  
> So...
>  Meine Frage ist, ob 4Bedingungen reichen, um die Aufgabe
> lösen zu können?

Lösen schon: nur ist die Lösung unterbestimmt, denn Du hast ja 5 Parameter, die Du bestimmen willst aber nur 4 Gleichungen und eine Ungleichung. Mit anderen Worten: Du musst jedenfalls mit unendlich vielen Lösungen rechnen.

Wenn Du die vier Gleichungen ausgequetscht hast, bleibt in Deinem Ansatz ein freier Parameter übrig.
Dann musst Du noch schauen, was die Ungleichung $f''(-1) > 0$ für diesen freien Parameter bedeutet: welche Lösungen nach Berücksichtigung auch der Ungleichung noch übrig bleiben.

> (oder hab ich eine Bedingung übersehen?)

Nein, ist nicht mein Eindruck.

>  
> Wenn mans nicht lösen kann, hat die Aufgabe dann keine oder
> unendlich viele Lösungen?

Die Aufgabenstellung lautet ja: "Prüfe, ob es eine ganzrationale Funktion vierten Grades mit folgenden Eigenschaften gibt..."
Also kannst Du die Aufgabe, als Aufgabe, schon lösen: und zwar ganz gleich wieviele Funktionen (z.B. keine, eine, unendlich viele) mit den fraglichen Eigenschaften es gibt. Die Lösung hat einfach die Form JA (falls es eine solche Funktion gibt) bzw. NEIN (falls es keine solche Funktion gibt).

Bezug
                
Bezug
Funktion prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:35 Fr 10.08.2007
Autor: Mach17

Okay,
vielen Dank für deine Hilfe! :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de