www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Technische Informatik" - Funktionale Vollständigkeit
Funktionale Vollständigkeit < Technische Inform. < Praktische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Technische Informatik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionale Vollständigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:00 Sa 27.02.2010
Autor: mathlooser

Aufgabe
Zeigen Sie: { [mm] \to [/mm] ; 0} ist funktional vollständig.

wobei [mm] \overline{x} \cup [/mm] y = x [mm] \to [/mm] y ist.

Hallo Leute,

es geht hier um den Beweis für die Boolsche Algebra.

Nand und Nor hab ich bereits beweisen können, allerdings stellt sich mir bei dieser Aufgabe die Frage, wie ich denn die Null verwenden darf und vorallem warum!?

Also mein 1. Ansatz:

[mm] \overline{x} [/mm] = [mm] \overline{x} [/mm] + 0 = [mm] \overline{x} \to [/mm] y.

Wobei 0 ja nicht zwangsweise y ist [mm] \Rightarrow [/mm] falsch

Aus "x nicht" kann ich ja laut der Gesetze der Boolschen Algebra "x nicht" + "x nicht" gemacht werden allerdings müsste ich dann die 2te negation beim 2ten x irgendwie umformen, aber wie?

Gruss

math

        
Bezug
Funktionale Vollständigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:11 Mo 01.03.2010
Autor: cycore

hi..
nimms mir bitte nich übel, aber ich werde definitiv junktoren verwenden^^ also [mm] \perp [/mm] ist deine 0

wenn du das schon für [mm] \{\vee, \neg\} [/mm] gezeigt hast bist du schon fast fertig...
aber ich sehe da ein problem: du sagst [mm] {a\to b} [/mm] sei äquivalent zu [mm] {\neg a \oplus b} [/mm] aber das stimmt i.A. nicht! [mm] {(a\to b)\equiv (\neg a\vee b)} [/mm]
aber so krigst du dann ganz einfach äquivalenz zwischen [mm] a\to\perp [/mm] und [mm] {(\neg a \vee\perp)\equiv\neg a}. [/mm] Also ist [mm] \neg [/mm] schonmal fertig.
Ich denke ab hier kommst du alleine weiter, denn wie bekommst du [mm] \vee [/mm] aus [mm] \to [/mm] und [mm] \neg [/mm] ?
;)

Korrektur: selbst wenn du [mm] {a\to b} [/mm] so definierst wie du es geschrieben hast funktioniert es, denn auch hier erhälst du [mm] {(\neg a\oplus\perp)\equiv\neg a} [/mm] ..da wird der nächste schritt zwar ein wenig komlplizierter, aber auch das ist machbar

gruß cycore

Bezug
                
Bezug
Funktionale Vollständigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:47 So 11.03.2012
Autor: adrenaline

Hallo Leute,

ich bin bei meiner Suche auf diese Antwort gestossen.
Ich habe ebenfalls Probleme mit dem Beweis der Funktionalen Vollstaendigkeit.

NAND und NOR sind FV, das konnte ich noch nachvollziehen.

Aber fuer diesen Beweis { [mm] \rightarrow [/mm] , 0 } fehlt mir das Verstandnis.

Ausgehend vom NAND: [mm]x \uparrow y = \overline{xy}[/mm]

1. [mm]\overline{x} = \overline{x} + \overline{x} = \overline{ \overline{ \overline{x} + \overline{x}}} = \overline{xx} = x \uparrow x[/mm]

2. [mm]x + y = \neg (x + y) = \neg ( \neg x \neg y )= \overline{ x } \uparrow \overline{ y } = ( x \uparrow x ) \uparrow ( y \uparrow y )[/mm]

3. [mm]xy = \neg (\neg (xy)) = \neg (x \uparrow y) = (x \uparrow y) \uparrow (x \uparrow y)[/mm]


Habe ich mir folgenden Ansatz fuer [mm] (\rightarrow, [/mm] 0); x [mm] \rightarrow [/mm] y =  [mm] \overline{x} [/mm] + y ueberlegt:

1. [mm]\overline{x} = \overline{x} + 0 = x \to 0[/mm] hier fehlt jedoch das y

2. [mm]x + y = \overline{ \overline{x + y}} = \neg( \negx \negy )[/mm][mm]x + y = \overline{ \overline{x + y}} = \neg(\neg x \neg y) = \overline{(x \rightarrow 0)(y \rightarrow 0)} = [(x \rightarrow 0)(y \rightarrow 0)] \rightarrow 0[/mm]
(hier gehe ich von der Wahrheit der ersten Aussage aus)

3. [mm]xy = \overline{ \overline{xy}} = \overline{x} + \overline{y} = [(x \rightarrow 0) + (y \rightarrow 0)] \rightarrow 0[/mm] (hier ebenfalls)

Ich habe das ungute Gefuehl, das das alles so nicht stimmt.

1. Frage: Stimmt mein Beweis :)?
2. Frage: Wie gehe ich vor wenn nicht?

Gruss

adrenaline


Bezug
                        
Bezug
Funktionale Vollständigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Di 13.03.2012
Autor: cycore

Hallo adrenaline,
das funktioniert soweit.

> [...]
>
> Habe ich mir folgenden Ansatz fuer [mm](\rightarrow,[/mm] 0); x
> [mm]\rightarrow[/mm] y =  [mm]\overline{x}[/mm] + y ueberlegt:
>  
> 1. [mm]\overline{x} = \overline{x} + 0 = x \to 0[/mm] hier fehlt
> jedoch das y

und das ist gar kein problem, was sollte die Negation auch mit y zu tun haben?

>  
> 2. [mm]x + y = \overline{ \overline{x + y}} = \neg( \negx \negy )[/mm][mm]x + y = \overline{ \overline{x + y}} = \overline{\overline{x}\overline{y}} = \overline{(x \rightarrow 0)(y \rightarrow 0)} = [(x \rightarrow 0)(y \rightarrow 0)] \rightarrow 0[/mm]
> (hier gehe ich von der Wahrheit der ersten Aussage aus)

Du siehst, dass der zweite Schritt überflüssig ist — gehe ich richtig in der Annahme, dass du [mm]x+y = \overline{ \overline{x + y}} = \overline{\overline{x}\;\overline{y}} \dots[/mm] meintest?

> 3. [mm]xy = \overline{ \overline{xy}} = \overline{x} + \overline{y} = [(x \rightarrow 0) + (y \rightarrow 0)] \rightarrow 0[/mm]
> (hier ebenfalls)

Abgesehen davon, dass hier wirklich ein Strich über [mm]\overline{x}+\overline{y}[/mm] fehlt. Demnach:

>  
> [...]
>  
> 1. Frage: Stimmt mein Beweis :)?

Vgl. Korrektur.

>  2. Frage: Wie gehe ich vor wenn nicht?

Hiermit hinfällig ;)

Gruß cycore

Bezug
                                
Bezug
Funktionale Vollständigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:48 Mo 19.03.2012
Autor: adrenaline

Hallo cycore, danke fuer die Rueckmeldung.

Du siehst, dass der zweite Schritt überflüssig ist — gehe ich richtig in der Annahme, dass du $ x+y = [mm] \overline{ \overline{x + y}} [/mm] = [mm] \overline{\overline{x}\;\overline{y}} \dots [/mm] $ meintest?

Du hast recht der eine Schritt ist ueberfluessig, ich hatte Probleme mit dem Formeleditor.

Gruss

adrenaline


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Technische Informatik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de