www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mathematik-Wettbewerbe" - Funktionalgleichung 2
Funktionalgleichung 2 < Wettbewerbe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionalgleichung 2: Funktionalgleichung
Status: (Frage) beantwortet Status 
Datum: 12:01 Sa 21.05.2011
Autor: KingStone007

Hallo,
ich schaue mir folgende Aufgabe an als Vorbereitung auf Matheolympiaden.
Es sind alle Funktionen gesucht, die von R auf R abbilden und der folgenden Gleichung genügen:
f(xf(x)+f(y))=y+f(x)²

Da ich bereits einiges zeigen konnte, werde ich die Beweise für diese Teilschritte nicht mehr mit angeben.
(1) f ist bijektiv
(2) Es gilt für alle x: f(x)=-f(-x)
(3) f(f(x))=x   Die Funktion ist also zu sich selbst invers.
(4) f(0)=0

Nun, da f(x)=x offenbar die Gleichung erfüllt, denke ich, muss man zeigen, dass dies die einzige Funktion ist, die den Bedingungen genügt. Nach dem Beweis der Schritte (1)-(4) komme ich aber nun nicht weiter.
Es wäre echt nett, wenn mir jmd. von euch helfen könnte. :)

Lg, David

        
Bezug
Funktionalgleichung 2: Antwort
Status: (Antwort) fertig Status 
Datum: 13:51 Sa 21.05.2011
Autor: reverend

Hallo David,

scharfe Aufgabe.

Du bist fast fertig. Es gibt aber m.E. zwei Funktionen, die alle Bedingungen erfüllen.

> Es sind alle Funktionen gesucht, die von R auf R abbilden
> und der folgenden Gleichung genügen:
>  f(xf(x)+f(y))=y+f(x)²
>  
> Da ich bereits einiges zeigen konnte, werde ich die Beweise
> für diese Teilschritte nicht mehr mit angeben.
>  (1) f ist bijektiv
>  (2) Es gilt für alle x: f(x)=-f(-x)
>  (3) f(f(x))=x   Die Funktion ist also zu sich selbst
> invers.
>  (4) f(0)=0

Mal anschaulich:
(2) Die Funktion ist punktsymmetrisch zum Ursprung.
(3) Die Funktion ist spiegelsymmetrisch zur Geraden y=x.
(4) Die Funktion geht durch den Ursprung (was hier übrigens schon in (2) enthalten ist).

Die Bedingungen (2) und (3) werden nur erfüllt von folgenden zwei Funktionen:
f(x)=x
f(x)=-x

Dies folgt aus einer einfachen geometrischen Überlegung. Bedingung (2) kann, wenn auch (3) vorliegt, ja durch Spiegelsymmetrie zur Geraden y=-x ersetzt werden - analytisch gesprochen: f(-x)=-f(x).

> Nun, da f(x)=x offenbar die Gleichung erfüllt, denke ich,
> muss man zeigen, dass dies die einzige Funktion ist, die
> den Bedingungen genügt. Nach dem Beweis der Schritte
> (1)-(4) komme ich aber nun nicht weiter.
>  Es wäre echt nett, wenn mir jmd. von euch helfen könnte.
> :)

Reicht Dir das als Anstoß?

Grüße
reverend


Bezug
                
Bezug
Funktionalgleichung 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:35 So 22.05.2011
Autor: KingStone007

Hallo,
ach Mist, die Funktion hatte ich übersehen. Naja, jedenfalls verstehe ich zwar die Schritte, aber wirklich bei einem Beweis komme ich leider nicht weiter.

Lg, David

Bezug
                        
Bezug
Funktionalgleichung 2: Antwort
Status: (Antwort) fertig Status 
Datum: 13:57 So 22.05.2011
Autor: reverend

Hallo David,

ich denke, der einfachste Weg ist zu zeigen, dass [mm] f'(x)=\bruch{1}{f'(x)} [/mm] sein muss. Dies folgt daraus, dass f(x) seine eigene Umkehrfunktion ist.
Versuchs mal. Die letzten Schritte sind ja nicht schwierig, der Anfang schon.

Grüße
reverend

PS: Die reinen Symmetriebedingungen werden übrigens auch von Kreisen, 2n-Ecken und einigen anderen symmetrischen geschlossen Kurven (z.B. Kleeblatt, sternförmige Funktionen etc.) in passender Lage erfüllt - sie haben allerdings drei Eigenschaften, die hier nicht passen: sie sind höchstens als implizite Funktion darstellbar (z.B. $ [mm] x^2+y^2=r^2 [/mm] $), sie enthalten den Ursprung nicht (außer im entarteten Fall r=0 etc.), und sie bilden nicht ganz [mm] \IR [/mm] auf [mm] \IR [/mm] ab. ;-)

Bezug
                                
Bezug
Funktionalgleichung 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:06 So 22.05.2011
Autor: fred97


> Hallo David,
>  
> ich denke, der einfachste Weg ist zu zeigen, dass
> [mm]f'(x)=\bruch{1}{f'(x)}[/mm] sein muss.


Hallo Rev,

f ist nicht als differenzierbar vorausgesetzt.

Gruß FRED

> Dies folgt daraus, dass
> f(x) seine eigene Umkehrfunktion ist.
> Versuchs mal. Die letzten Schritte sind ja nicht schwierig,
> der Anfang schon.
>  
> Grüße
>  reverend
>  
> PS: Die reinen Symmetriebedingungen werden übrigens auch
> von Kreisen, 2n-Ecken und einigen anderen symmetrischen
> geschlossen Kurven (z.B. Kleeblatt, sternförmige
> Funktionen etc.) in passender Lage erfüllt - sie haben
> allerdings drei Eigenschaften, die hier nicht passen: sie
> sind höchstens als implizite Funktion darstellbar (z.B.
> [mm]x^2+y^2=r^2 [/mm]), sie enthalten den Ursprung nicht (außer im
> entarteten Fall r=0 etc.), und sie bilden nicht ganz [mm]\IR[/mm]
> auf [mm]\IR[/mm] ab. ;-)


Bezug
                                        
Bezug
Funktionalgleichung 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 So 22.05.2011
Autor: reverend

Hallo Fred,


> > ich denke, der einfachste Weg ist zu zeigen, dass
> > [mm]f'(x)=\bruch{1}{f'(x)}[/mm] sein muss.
>
> Hallo Rev,
>  
> f ist nicht als differenzierbar vorausgesetzt.
>  
> Gruß FRED

Mist, stimmt.
Aber wie formuliert man dann einen einfachen Weg, der aus den Voraussetzungen zu den beiden Lösungen führt?

Grüße
rev


Bezug
                                                
Bezug
Funktionalgleichung 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:25 So 22.05.2011
Autor: KingStone007

Hmm.. Warum kann ich eigentlich nicht aus:

f(xf(x)+f(y))=y+f(x)² auch auf der rechten Seite f(x) durch x ersetzen. Würde dies irgendwie aus f(f(x))=x folgen?

Also f(xf(x)+f(y))=y+f(x)²=y+x² ---> f(x)=+-x ?!

Lg, David

Bezug
                                                        
Bezug
Funktionalgleichung 2: Antwort
Status: (Antwort) fertig Status 
Datum: 14:30 So 22.05.2011
Autor: fred97


> Hmm.. Warum kann ich eigentlich nicht aus:
>
> f(xf(x)+f(y))=y+f(x)² auch auf der rechten Seite f(x)
> durch x ersetzen. Würde dies irgendwie aus f(f(x))=x
> folgen?

Im allgemeinen ist $f(f(x)) [mm] \ne f(x)^2$ [/mm]

FRED


>  
> Also f(xf(x)+f(y))=y+f(x)²=y+x² ---> f(x)=+-x ?!
>  
> Lg, David


Bezug
                                                                
Bezug
Funktionalgleichung 2: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 So 22.05.2011
Autor: KingStone007

Naja mal formal aufgeschrieben wäre:

f(xf(x)+f(y))=y+f(x)²   I

Setzen wir mal f(x)=t dann erhalten wir f(t)=f(f(x))=f(t)=x nach Bedingung (2) oder so.

Dann erhalten wir f(tf(t)+f(y))=f(x(f(x)+f(y))=y+f(t)²=y+x²   II
I und II sind offenbar gleich, also f(x)²=x² und dadurch f(x)=|x|, woraus die beiden Funktionen folgen würden.

Geht das so?

Lg, David


Bezug
                                                                        
Bezug
Funktionalgleichung 2: Antwort
Status: (Antwort) fertig Status 
Datum: 14:41 So 22.05.2011
Autor: fred97


> Naja mal formal aufgeschrieben wäre:
>  
> f(xf(x)+f(y))=y+f(x)²   I
>  
> Setzen wir mal f(x)=t dann erhalten wir f(t)=f(f(x))=f(t)=x
> nach Bedingung (2) oder so.
>  
> Dann erhalten wir
> f(tf(t)+f(y))=f(x(f(x)+f(y))=y+f(t)²=y+x²   II
>  I und II sind offenbar gleich, also f(x)²=x² und dadurch
> f(x)=|x|,

Prima !

>  woraus die beiden Funktionen folgen würden.
>  
> Geht das so?

Fast. Wegen f(x)=-f(-x) folgt dann:  f(x)=x für alle x oder f(x)=-x für alle x

FRED

>  
> Lg, David
>    


Bezug
                                                                                
Bezug
Funktionalgleichung 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:19 So 22.05.2011
Autor: KingStone007

Sehr nice. Danke euch! :)

Lg, David

Bezug
                                                                                        
Bezug
Funktionalgleichung 2: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:43 So 22.05.2011
Autor: reverend

Hallo nochmal,

> Sehr nice. Danke euch! :)

Na, das war aber kaum nötige Schützenhilfe.
Den eleganten Einfall für die Lösung hattest Du immerhin selbst.

Weiter so!

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mathematik-Wettbewerbe"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de