www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Funktionen
Funktionen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 19:05 So 11.04.2010
Autor: Anja470

Wie Berechne ich die Nullstellen, Polstellen, die asymptotischen Polynome und die Parzialbruchzerlegung von

[mm] z(x)=3x^{4}+x^{3}+4x^{2}-x+1 [/mm] / [mm] x^{5}+2x^{3}+x [/mm]      ?


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:16 So 11.04.2010
Autor: ONeill

Hi!

> Wie Berechne ich die Nullstellen, Polstellen, die
> asymptotischen Polynome und die Parzialbruchzerlegung von
>
> [mm]z(x)=3x^{4}+x^{3}+4x^{2}-x+1[/mm] / [mm]x^{5}+2x^{3}+x[/mm]      ?
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.  

Hier in diesem Forum wollen Dir dabei helfen die Lösung zu finden. Hast Du das Problem nur bei diesem Beispiel oder kannst Du generell keine Nullstellen etc berechnen?

Gruß Christian [hut]

Bezug
                
Bezug
Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:33 So 11.04.2010
Autor: Anja470

Ich hab nur ein Problem Nullstellen bei Brüchen zu berechnen.
Ansonsten kann ich Nullstellen glaub ich auch mit der Formel
[mm] x_{1,2}=\bruch{-p}{2}\pm\wurzel((\bruch{-p}{2})^{2}-q) [/mm]
arbeiten. Bin mir aber nicht sicher!

Bezug
                        
Bezug
Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:41 So 11.04.2010
Autor: metalschulze

Hallo,
> Ich hab nur ein Problem Nullstellen bei Brüchen zu
> berechnen.

Das ist eigentlich nicht anders als bei normalen Polynomen, der Bruch wird zu Null, wenn der Zähler zu Null wird.Gesucht sind also die Nullstellen des Polynoms im Zähler. Die Polstellen sind dann die Nullstellen des Polynoms im Nenner.

>  Ansonsten kann ich Nullstellen glaub ich auch mit der
> Formel
> [mm]x_{1,2}=\bruch{-p}{2}\pm\wurzel((\bruch{-p}{2})^{2}-q)[/mm]
>  arbeiten. Bin mir aber nicht sicher!

Das geht damit, diese Formel ist aber für quadratische Gleichungen der Form [mm] x^2 [/mm] + px + q du hast hier ein Polynom 4.Ordnung, da heisst es probieren....
probier ob z.B. für x=1 oder x=-1 der Zähler 0 wird, und dann Polynomdivision anwenden
Gruss Christian

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de