www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Funktionen bestimmen
Funktionen bestimmen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Mi 13.10.2010
Autor: Marius6d

Aufgabe
1. Es seien
W := {Montag,Dienstag,Mittwoch, Freitag, Samstag},
T := {Kochen, Putzen, Party, Sport, Studieren}.
Für die drei Studenten Anton, Beatrice und Christian sei gemäss folgender Tabelle
jeweils eine Funktion fA, fB bzw. fC : W --> T definiert:

           Montag        Dienstag    Mittwoch Freitag Samstag
Anton      Sport         Putzen      Sport    Kochen  Party
Beatrice   Putzen        Kochen      Sport    Party   Studieren
Christian  Studieren     Studieren   Studieren Party Party

a) Bestimmen Sie die Wertebereiche im(fA), im(fB) und im(fC).
b) Untersuchen Sie jede der drei Funktionen auf Injektivität, Surjektivität und Bijektivität.
c) Für welche Funktion f [mm] \in [/mm] {fA, fB, fC} lässt sich ein f^-1 : T --> W finden, so
dass f^-1(f(w)) = w für alle w [mm] \in [/mm] W?
d) Kann für die gegebenen Mengen W und T eine Abbildung g : W --> T existieren,
welche injektiv, aber nicht surjektiv ist?




Also ich habe die Aufgabe mal gelöst, stimmen folgende Antworten?:

1a) fA --> (Sport, Putzen, Kochen, Party)
    fB --> (Sport, Putzen, Kochen, Party, Studieren)
    fC --> (Party, Studieren)

b) fA: nichts
    fB: surjektiv, injektiv --> bijektiv
    fC: nichts

c) Für fB gibt es eine Umkehrfunktion

d) Ja, es kann eine solche existieren

        
Bezug
Funktionen bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:50 Mi 13.10.2010
Autor: meili

Hallo,

> 1. Es seien
>  W := {Montag,Dienstag,Mittwoch, Freitag, Samstag},
>  T := {Kochen, Putzen, Party, Sport, Studieren}.
>  Für die drei Studenten Anton, Beatrice und Christian sei
> gemäss folgender Tabelle
>  jeweils eine Funktion fA, fB bzw. fC : W --> T definiert:

>  
> Montag        Dienstag    Mittwoch Freitag Samstag
>  Anton      Sport         Putzen      Sport    Kochen  
> Party
>  Beatrice   Putzen        Kochen      Sport    Party  
> Studieren
>  Christian  Studieren     Studieren   Studieren Party
> Party
>  
> a) Bestimmen Sie die Wertebereiche im(fA), im(fB) und
> im(fC).
>  b) Untersuchen Sie jede der drei Funktionen auf
> Injektivität, Surjektivität und Bijektivität.
>  c) Für welche Funktion f [mm]\in[/mm] {fA, fB, fC} lässt sich
> ein f^-1 : T --> W finden, so
>  dass f^-1(f(w)) = w für alle w [mm]\in[/mm] W?
>  d) Kann für die gegebenen Mengen W und T eine Abbildung
> g : W --> T existieren,
>  welche injektiv, aber nicht surjektiv ist?
>  
>
>
> Also ich habe die Aufgabe mal gelöst, stimmen folgende
> Antworten?:
>  
> 1a) fA --> (Sport, Putzen, Kochen, Party)
>      fB --> (Sport, Putzen, Kochen, Party, Studieren)

>      fC --> (Party, Studieren)

[ok]
(wobei im(fA) = {Sport, Putzen, Kochen, Party} schöner wäre)

>  
> b) fA: nichts
>      fB: surjektiv, injektiv --> bijektiv

>      fC: nichts

[ok]

>  
> c) Für fB gibt es eine Umkehrfunktion

[ok]

>  
> d) Ja, es kann eine solche existieren

[notok]
Sofern eine Abbildung (anderst als eine Funktion) so definiert ist, dass es zu jedem Element aus W ein Bild gibt, dann nein.

Gruß meili


Bezug
                
Bezug
Funktionen bestimmen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:19 Mi 13.10.2010
Autor: Marius6d

Ah klar ist logisch! Danke

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de