www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Funktionen extrudieren
Funktionen extrudieren < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen extrudieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:19 Do 27.03.2014
Autor: MrMuffin

Hallo zusammen,
ich habe die folgende Frage:

Gegeben seien zwei beliebige Kurven $f$ und $g$ in [mm] $\IR^3$. [/mm] Wie kann ich mathematisch $f$ entlang $g$ extrudieren, sodass durch beide Kurven eine 3 dimensionale Fläche aufgespannt wird?

Das []Bild erklärt hoffentlich was ich meine.
Abgebildet sind 2 Splines und ich bin an der Beschreibung der Fläche interessiert (NICHT am Flächeninhalt!). Ich suche also eine Funktion in Abhängigkeit der Koordinaten $x,y,z$, sodass ich jeden Punkt der Fläche bestimmen kann.

Ich frage mich, ob man das über eine explizite Darstellung eines Oberflächenintegrals realisieren kann.

Für Hilfe bin ich wie immer dankbar!

Viele Grüße
MrMuffin

        
Bezug
Funktionen extrudieren: Antwort
Status: (Antwort) fertig Status 
Datum: 14:31 Do 27.03.2014
Autor: Diophant

Hallo,

> Hallo zusammen,
> ich habe die folgende Frage:

>

> Gegeben seien zwei beliebige Kurven [mm]f[/mm] und [mm]g[/mm] in [mm]\IR^3[/mm]. Wie
> kann ich mathematisch [mm]f[/mm] entlang [mm]g[/mm] extrudieren, sodass durch
> beide Kurven eine 3 dimensionale Fläche aufgespannt wird?

>

> Das []Bild
> erklärt hoffentlich was ich meine.
> Abgebildet sind 2 Splines und ich bin an der Beschreibung
> der Fläche interessiert (NICHT am Flächeninhalt!). Ich
> suche also eine Funktion in Abhängigkeit der Koordinaten
> [mm]x,y,z[/mm], sodass ich jeden Punkt der Fläche bestimmen kann.

Da stimmt aber etwas nicht. Eine Funktion f(x,y,z) ist eine Funktion in einem vierdimensionalen Raum. Für mich ergibt das nur Sinn, wenn die Funktionen f und g beide vom Typ [mm] \IR\to\IR^3 [/mm] wären, also von einem Parameter abhängig aber vektorwertig. Das ergäbe dann jeweils ein linienförmiges Schaubild im [mm] \IR^3. [/mm]

Jetzt zur Extrusion: das beruht doch auf Gegenseitigkeit, also man kann ja nachher am Ende nicht mehr sagen, welche Funktion entlang der anderen extrudiert wurde. Und realisieren kann man das doch einfach durch eine bloße Addition, wobei jedoch darauf zu achten ist, dass f und g von unterschiedlichen Parametern abhängen, damit eine Fläche zustande kommt.

Ich gebe ja zu, dass meine Antwort jetzt eine Art Hüftschuss ist, aber ich müsste mich doch arg täuschen, wenn ich daneben liege.

> Ich frage mich, ob man das über eine explizite Darstellung
> eines Oberflächenintegrals realisieren kann.

Wenn du keinen Inhalt haben möchtest, wozu dann ein Integral?

Gruß, Diophant

Bezug
                
Bezug
Funktionen extrudieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:37 Do 27.03.2014
Autor: MrMuffin

Recht hast du :D

Da habe ich den Wald vor lauter Bäumen nicht gesehen.

Vielen Dank!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de