www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Funktionen finden
Funktionen finden < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen finden: Tipp
Status: (Frage) beantwortet Status 
Datum: 15:32 Di 08.06.2010
Autor: julmarie

Finde alle Funktionen y: [mm] \IR \to \IR, [/mm] die folgende Gleichungen erfüllen:

[mm] y(t)=1+\integral_{0}^{t}{y^2 (s) ds} [/mm]  für alle t>0 und [mm] y:(0,\infty \to \IR [/mm] )


jetzt muss man ja [mm] y´(t)=y^2 [/mm] (t) setzen und ermittelt den AW y(0)=1

Aber schon jetzt komme ich nicht mehr weiter, bisher haben wir immer einfache DGL gehabt, sodass man die e-Funktion nutzen konnte z.B.
y´(t)=2y(t)
y(t)= c*e^2t

deswegen komme ich nicht weiter...

ich weiß, dass ich in die Funktion dann den AW einsetzen muss und dann alle möglichen Funktionen ermitteln kann.. aber ich komme leider nicht weiter..
kann mir jemand helfen? irgendeinen ansatz geben?




        
Bezug
Funktionen finden: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 Di 08.06.2010
Autor: fred97


> Finde alle Funktionen y: [mm]\IR \to \IR,[/mm] die folgende
> Gleichungen erfüllen:
>  
> [mm]y(t)=1+\integral_{0}^{t}{y^2 (s) ds}[/mm]  für alle t>0 und
> [mm]y:(0,\infty \to \IR[/mm] )
>  
>
> jetzt muss man ja [mm]y´(t)=y^2[/mm] (t) setzen

Im Quelltext sehe ich, dass Du     [mm]y'(t)=y^2 (t) [/mm]  geschrieben hast.

Das ist richtig. Wie bist Du darauf gekommen ?


> und ermittelt den
> AW y(0)=1

?????????????????  Das ist Unfug ! 1. von einem Anfangswertproblem ist in der Aufgabenstellung nicht die Rede. 2.  y ist in 0 nicht definiert, denn oben heißt es: $ [mm] y:(0,\infty) \to \IR [/mm] $

>  
> Aber schon jetzt komme ich nicht mehr weiter, bisher haben
> wir immer einfache DGL gehabt, sodass man die e-Funktion
> nutzen konnte z.B.
>  y´(t)=2y(t)
>  y(t)= c*e^2t
>  
> deswegen komme ich nicht weiter...
>  
> ich weiß, dass ich in die Funktion dann den AW einsetzen


Nein. s.o.


> muss und dann alle möglichen Funktionen ermitteln kann..

Quatsch


> aber ich komme leider nicht weiter..
>  kann mir jemand helfen? irgendeinen ansatz geben?

Wegen  [mm]y(t)=1+\integral_{0}^{t}{y^2 (s) ds}[/mm]  ist y [mm] \ge [/mm] 1 >0, somit kannst Du die DGL

                  [mm]y'(t)=y^2 (t) [/mm]

mit der Methode "Trennung der Veränderlichen " lösen

FRED

                    

>
>
>  


Bezug
                
Bezug
Funktionen finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Di 08.06.2010
Autor: julmarie

$ [mm] y'(t)=y^2 [/mm] (t) $

so haben wir das in unserer Übung auch gemacht..
was ist denn die : Methode "Trennung der Veränderlichen "


Bezug
                        
Bezug
Funktionen finden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Di 08.06.2010
Autor: fred97


> [mm]y'(t)=y^2 (t)[/mm]
>  
> so haben wir das in unserer Übung auch gemacht..


Mein Gott, was ist denn das für eine Begründung ?

Uli Hoeneß hat im Endspiel um die Europameisterschaft 1976 einen Elfmeter veschossen. Stell Dir mal vor, einer unserer Fußballjungs verschießt bei der kommenden Weltmeisterschaft einen Elfmeter. Nach dem Spiel wird er gefragt, wie das passieren konnte. Er antwortet: " ....   so hat das der Hoeneß auch gemacht"  . Da wären wir doch alle sehr zufrieden, gell ?

Spaß beiseite: aus

            $ [mm] y(t)=1+\integral_{0}^{t}{y^2 (s) ds} [/mm] $

folgt durch Differentiation [mm]y'(t)=y^2 (t)[/mm]. Der Hauptsatz der Differential- und Integralrechnung lässt grüßen.




>  was ist denn die : Methode "Trennung der Veränderlichen "

Schau mal hier:

                  http://www.mathepedia.de/DGL_mit_getrennten_Variablen.aspx

FRED

>  


Bezug
                                
Bezug
Funktionen finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:37 Di 08.06.2010
Autor: julmarie

ich stehe grad etwas auf dem Schlauch, aber trenne ich das dann so:

[mm] y´=y^2 [/mm]
[mm] \bruch{y´}{y^2} [/mm] = 1

wenn ich das dann integriere bekomme ich:

[mm] \bruch{x}{y^2} [/mm] =x

und dass ist dann wieder [mm] \bruch{1}{y^2} [/mm]

????

Bezug
                                        
Bezug
Funktionen finden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:40 Di 08.06.2010
Autor: fred97



Was Du da schreibst ist nicht lesbar. Der Formeleditor hat eine Vorschaufunktion !!!!!

Hast Du Dir das

               http://www.mathepedia.de/DGL_mit_getrennten_Variablen.aspx

durchgelesen

Bezug
                                                
Bezug
Funktionen finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:45 Di 08.06.2010
Autor: julmarie

ja hab ich, der Fall ist auch leicht nachvollziehbar, aber ich bin mir für meine aufgaben bei dden getrennten Variablen nicht sich, was  g(x) und h(y) sein sollen..

Bezug
                                                        
Bezug
Funktionen finden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:50 Di 08.06.2010
Autor: fred97


> ja hab ich, der Fall ist auch leicht nachvollziehbar, aber
> ich bin mir für meine aufgaben bei dden getrennten
> Variablen nicht sich, was  g(x) und h(y) sein sollen..


allgemein: $y'=g(x)h(y)$

Dein Fall: [mm] $y'=y^2$ [/mm]

Na, was ist dann wohl g und was h ?

Trennung liefert:

                 [mm] $\bruch{dy}{y^2}=dx$ [/mm]

Jetzt Du

FRED

Bezug
                                                                
Bezug
Funktionen finden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:52 Di 08.06.2010
Autor: julmarie

das hatte ich ja in meinem vorletzten Beitrag auch so geschrieben, wenn ich dass jetzt integriere folgt:

[mm] \bruch{1}{y^2} [/mm] = x

oder nicht?

Bezug
                                                                        
Bezug
Funktionen finden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:59 Di 08.06.2010
Autor: fred97


> das hatte ich ja in meinem vorletzten Beitrag auch so
> geschrieben

Der war zunächst nicht lesbar !


> , wenn ich dass jetzt integriere folgt:
>  
> [mm]\bruch{1}{y^2}[/mm] = x
>  
> oder nicht?

Nein. Eine Stammfunktion von [mm] \bruch{1}{y^2} [/mm]  ist [mm] \bruch{-1}{y} [/mm]

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de