www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Funktionen gleich auf [0,1)
Funktionen gleich auf [0,1) < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen gleich auf [0,1): Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:14 Mi 26.10.2011
Autor: Igor1

Hallo,

seien f,g stetige Funktionen , die auf [0,1) gleich sind und beide im Punkt [mm] x_{0}:=1 [/mm] stetig sind.
Dann sind sie auf [0,1] gleich. (Woher weiß man das? Gibt es
einen konkreten Satz dafür?Hat das damit zu tun , dass man eine Funktion eindeutig stetig fortsetzen kann (gibt es sowas ?) )
(die beiden Funktionen können einen Definitionsbereich haben, der nicht unbedingt gleich dem Intervall [0,1]  sein soll)

Als Beispiel ( wegen dem stelle ich diese Frage):
ln(x+1) = [mm] \summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n} [/mm] für x [mm] \in [/mm] [0,1). Wegen dem Abelschen Grenzwertsatz ist die Potenzreihe in 1 stetig.
ln(x+1) ist auch in 1 stetig.
In Forster steht, dass beide Funktionen auch in [mm] \x_{0}=1 [/mm] gleich sind.

Kann man diese Aussage folgendermassen zeigen:

sei g(x):=ln(x+1), h(x):=  [mm] \summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n} [/mm]
zu zeigen: g(1)=h(1)

Da beide Funktionen in [mm] x_{0} [/mm] stetig sind, gilt

[mm] \limes_{x\rightarrow\1}g(x)=g(1) [/mm]
[mm] \limes_{x\rightarrow\1}h(x)=h(1) [/mm]
also es ist zu zeigen, dass
[mm] \limes_{x\rightarrow\1}g(x)=\limes_{x\1}h(x) [/mm] gilt.
Hier würde ich das so argumentieren:
Da [mm] x\not= [/mm] 1 und g(x)=h(x) für [mm] x\in [/mm] [0,1) und damit die Behauptung  ?


Gruss
Igor




        
Bezug
Funktionen gleich auf [0,1): Antwort
Status: (Antwort) fertig Status 
Datum: 14:20 Mi 26.10.2011
Autor: donquijote


> Hallo,
>  
> seien f,g stetige Funktionen , die auf [0,1) gleich sind
> und beide im Punkt [mm]x_{0}:=1[/mm] stetig sind.
> Dann sind sie auf [0,1] gleich. (Woher weiß man das? Gibt
> es
>  einen konkreten Satz dafür?Hat das damit zu tun , dass
> man eine Funktion eindeutig stetig fortsetzen kann (gibt es
> sowas ?) )

siehe unten, da du aufgrund der Stetigkeit  f(1) als Grenzwert erhältst.
Das gilt jedoch nur, wenn vorausgesetzt wird, dass f in 1 definiert und stetig ist, ansonsten muss der Grenzwert nicht existieren (z.B. f(x)=1/(1-x))

>  (die beiden Funktionen können einen Definitionsbereich
> haben, der nicht unbedingt gleich dem Intervall [0,1]  sein
> soll)
>  
> Als Beispiel ( wegen dem stelle ich diese Frage):
> ln(x+1) = [mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n}[/mm]
> für x [mm]\in[/mm] [0,1). Wegen dem Abelschen Grenzwertsatz ist die
> Potenzreihe in 1 stetig.
>  ln(x+1) ist auch in 1 stetig.
>  In Forster steht, dass beide Funktionen auch in [mm]\x_{0}=1[/mm]
> gleich sind.
>  
> Kann man diese Aussage folgendermassen zeigen:
>  
> sei g(x):=ln(x+1), h(x):=  
> [mm]\summe_{n=1}^{\infty}\bruch{(-1)^{n}}{n}*x^{n}[/mm]
>  zu zeigen: g(1)=h(1)
>  
> Da beide Funktionen in [mm]x_{0}[/mm] stetig sind, gilt
>
> [mm]\limes_{x\rightarrow\1}g(x)=g(1)[/mm]
> [mm]\limes_{x\rightarrow\1}h(x)=h(1)[/mm]
>  also es ist zu zeigen, dass
>  [mm]\limes_{x\rightarrow\1}g(x)=\limes_{x\1}h(x)[/mm] gilt.
>  Hier würde ich das so argumentieren:
>  Da [mm]x\not=[/mm] 1 und g(x)=h(x) für [mm]x\in[/mm] [0,1) und damit die
> Behauptung  ?

Die Argumentation ist vollkommen korrekt, da gibt es nix hinzuzufügen.

>  
>
> Gruss
>  Igor
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de