www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Funktionen höheren Grades - Zeichnung und Funktionsgleichung erkennen
Funktionen höheren Grades - Zeichnung und Funktionsgleichung erkennen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen höheren Grades - Zeichnung und Funktionsgleichung erkennen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Di 24.08.2004
Autor: Disap

Was soll ich zum Betreff noch schreiben? Ich habe das Problem, dass ich es partout nicht erkennen kann, wie die Funktionsgleichung der Funktion erkennen kann. Und zeichnen kann ich die auch nicht, kann man das irgendwie machen, ohne eine WErtetabelle zu erstellen?

( Ich habe diese Frage in keinem weiteren Forum gestellt. )

mfG

        
Bezug
Funktionen höheren Grades - Zeichnung und Funktionsgleichung erkennen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:55 Di 24.08.2004
Autor: AT-Colt

Ich habe Deine Frage wahrscheinlich nicht richtig verstanden ^^;

Aber wenn es war, wie Du aus einer Funktionsgleichung den Graphen der Funktion herleiten kannst, dann bist Du mit einer Kurvendiskussion gut beraten, da diese Dir markante Punkte der Funktion liefert (Nullstellen, Sattel/Extrempunkte, Wendepunkte, Randverhalten), damit kannst Du schonmal ein gutes "Phantombild" der Funktion zeichnen, was den meisten Lehrern auch reicht.

Andersherum wird es etwas schwerer, da musst Du bestimmte Charakteristika von Funktionen kennen, z.B. Symmetriearten von Polynomfunktionen, Aussehen von Parabeln und ähnlichen Funktionen, etc.

greetz

AT-Colt

Bezug
                
Bezug
Funktionen höheren Grades - Zeichnung und Funktionsgleichung erkennen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:26 Di 24.08.2004
Autor: Disap

Joa, die hast du leider falsch verstanden :(

Aber erst einmal vielen Dank für die Antwort (auch die im anderen Artikel)
zurück auf meine Frage

Angenommen man hat die Funktionsgleichung: 4x³ - 3x² + 4x + 5
Ist es möglich, diese Funktion zu zeichnen, OHNE einen Wendepunkt, Nullstellen, Extremum oder sonstiges vorher zu berechnen?


Bezug
                        
Bezug
Funktionen höheren Grades - Zeichnung und Funktionsgleichung erkennen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Di 24.08.2004
Autor: Fermat2k4

Hi,

sicher kannst du das tun! Du müsstest zu diesem Zweck eine Wertetabelle anlegen!
Allerdings ist das nicht zu empfehlen. Ich würde vorschlagen trotzdem eine Kurvendiskussion zu machen, um markante Punkte zu erschließen !

MfG

Alex

Bezug
                                
Bezug
Funktionen höheren Grades - Zeichnung und Funktionsgleichung erkennen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:56 Di 24.08.2004
Autor: Disap

Genau das wollte ich ja wissen, obs ohne rechnen und ohne Wertetabelle geht

Bezug
                                        
Bezug
Funktionen höheren Grades - Zeichnung und Funktionsgleichung erkennen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:07 Di 24.08.2004
Autor: Fermat2k4

Damit raubst du einem ja das ganze Handwerkszeug !
nee...irgendetwas musst du uns schon lassen !

Gruß

Alex

Bezug
                                        
Bezug
Funktionen höheren Grades - Zeichnung und Funktionsgleichung erkennen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:54 Mi 25.08.2004
Autor: Mikel

Hallo Disap,

ich würde folgendermaßen vorgehen. Die Aufgabe lautet ja:

4x³-3x²+4x+5 (  ax³-bx²+cx+d)

An dem Absolutglied +5 kann man als ersten Schritt sozusagen schon mal erkennen, dass der Graph die Y-Achse bei [0/+5) schneidet.

Die höchste Potenz (hier x³) bestimmt immer den Verlauf des Graphen. Sie ist ungerade, das heißt, der Graph verläuft nicht symetrisch zur Y-Achse, sondern punktsymetrisch zum Ursprung. Da a >0, verläuft der Graph von - (unendlich) im 3. Quadranten nach + (unendlich) in den 1. Quadranten. Natürlich habe ich mich mit dem Funktionsplotter noch mal vergewissert ob ich richtig liege. Wenn man sich eine ganzrationale Funktion auf diese Weise genau ansieht, dann weiß man ungefähr wie der Graph verläuft.

Der Graph sieht dann so aus

Grüße
Mikel

4x³-3x²+4x+5


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de