www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ganzrationale Funktionen" - Funktionen mit Parameter
Funktionen mit Parameter < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionen mit Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:45 So 16.03.2008
Autor: prinzessin_lea

Aufgabe
Gegeben sind die Funktionen f(x) = 2x² und gt(x)=-tx²+4. Für welchen Wert von t stehen die Schaubilder der beiden Funktionen in ihrem Schnittpunkt senkrecht aufeinander.  

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Mir ist klar, dass
f(x) = gt(x)
und
f'(x) = g't(x) = -1
(Wobei f'(x) = -2x und g't(x) =2tx)

Somit erhalte ich aus f(x) = gt(x) die Gleichung
x² = 3/(t+1)
und aus  f'(x) = g't(x) = -1 die Gleichung
-4tx² = -1.

Dann setzte ich -4t*(3/8t+1)) = -1 und löse nach t auf.
Und genau das ist mein Problem. Wie löse ich diese Gleichung nach t auf?

        
Bezug
Funktionen mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 13:56 So 16.03.2008
Autor: Teufel

Hallo!

Aber wenn du f(x) und [mm] g_t(x) [/mm] gleichsetzt kommt auch etwas anderes raus!

2x²=-tx²+4
2x²+tx²=4
x²(2+t)=4
[mm] x²=\bruch{4}{2+t} [/mm]
[mm] x=\pm \bruch{2}{\wurzel{2+t}} [/mm]

Da die Parabeln achsensymmetrisch sind, kannst du dich dann auf eins der beiden Ergebnisse stützen.

Aber der Rest stimmt sonst, du kannst das x in deine 2. Gleichung einsetzen und nach t auflösen, indem du die Gleichung mit dem Nenner des Bruches multiplizierst als ersten Schritt!

Bezug
                
Bezug
Funktionen mit Parameter: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:10 So 16.03.2008
Autor: prinzessin_lea

Klar, stimmt x² = 4/(2+t).

Wenn ich dieses Ergebnis in die zweite Gleichung einsetzte erhalte ich doch -8t*(4/(2+t)) = -1, oder?
Aber wenn ich dann mit (2+t) multipliziere erhalte ich doch
-32t = -2-t. Und wenn das stimmt, dann weiß ich nicht, wie ich mit diser Gleichung weiterrechnen muss um ein t herauszubekommen.


Bezug
                        
Bezug
Funktionen mit Parameter: Antwort
Status: (Antwort) fertig Status 
Datum: 14:19 So 16.03.2008
Autor: Teufel

-4tx²=-1

[mm] -4t*\bruch{4}{2+t}=-1 [/mm]

[mm] -\red{16}t=-2-t [/mm] |+t

-15t=-2

[mm] t=\bruch{2}{15} [/mm]

Hattest wohl einen Blackout ;)

Bezug
                                
Bezug
Funktionen mit Parameter: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:22 So 16.03.2008
Autor: prinzessin_lea

Ach klar.
Tja, solang mir so ein Blackout nicht im Abi passiert... ;)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de