www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - Funktionenfolgen
Funktionenfolgen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenfolgen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:16 Mi 16.06.2004
Autor: Britta

Hallo Leute!

Ich brauche dringend Hilfe bei meinen Matheaufgaben, ich studiere Mathe Lehramt und im Gegensatz zu den Diplomern verstehe ich nicht sehr viel von den Übungsaufgaben und diese können es auch nicht erklären.

Die Aufgabe lautet wie folgt:

Es sei fn(x) := ( [mm] x^n [/mm] - 1 / [mm] x^n [/mm] + 1)²  dabei soll x ungleich -1 sein.

Berechne f(x) := lim n -> unendlich fn(x). Was fällt beim Vergleich der Funktionen f(x) und fn(x) auf?

Wäre echt nett wenn ihr mir ein paar Tips geben könntet.

Lieben Gruß Britta

        
Bezug
Funktionenfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:47 Mi 16.06.2004
Autor: Micha

Hallo!
Also zunächst einmal der Grenzwert von [mm]f_n[/mm] für n -> unendlich:

[mm] \limes_{n \to \infty}(\bruch{x^n - 1}{x^n + 1})^2 [/mm] =
[mm] \limes_{n \to \infty}\bruch {x^{2n} - 2x^n + 1}{x^{2n} + 2x^n + 1} [/mm] = 1

Daraus würde folgen, dass die Grenzfunktion [mm]f(x) = 1[/mm] ist, aber wenn du dir die Graphen für verschiedene n zeichnen lässt, stellst du fest, dass das nur in den Intervallen [mm] (-\infty , -1) und (1, +\infty) [/mm] der Fall ist... Am besten du lässt dir die Funkionenschar mal in nem Matheprogramm zeichnen mit verschiedenen n, dann siehst du das Verhalten an -1 und 1 deutlich.

Fazit: Nur in den angegebenen Intervallen konvergiert [mm]f_n[/mm] gleichmäßig gegen f. (Man könnte das noch mit gleichmäßiger Stetigkeit zeigen, aber das is mir grad bisschen zu mühsam *zugeb*)

Bezug
        
Bezug
Funktionenfolgen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:58 Mi 16.06.2004
Autor: Julius

Hallo Britta!

Noch mal zur Ergänzung:

Es gilt also für $x [mm] \in \IR \setminus\{-1\}$: [/mm]

$f(x) = [mm] \left\{ \begin{array}{ccc} 1 & , & x \ne 1.\\[5pt] 0 & , & x=1. \end{array} \right.$ [/mm]

Daher ist $f$ in $x=1$ nicht stetig, während die Funktionen [mm] $f_n$ [/mm] in ganz [mm] $\IR \setminus \{-1\}$ [/mm] stetig sind.

Daran sieht man: Der punktweise Limes stetiger Funktionen muss nicht wieder stetig sein!

Dies gilt nur, wenn die Funktionenfolge gleichmäßig konvergiert!

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de