www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Funktionenräume
Funktionenräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenräume: Idee
Status: (Frage) beantwortet Status 
Datum: 20:45 Do 12.11.2009
Autor: jales

Aufgabe
Es sei [mm] C^{0}([0,1]) [/mm] der [mm] \IR-Vektorraum [/mm] der stetigen reellwertigen Funktion auf [0,1]. Welche der folgenden Teilmengen sind [mm] \IR-Untervektorräume [/mm] von [mm] C^{0}([0,1])? [/mm] Und welche Teilmengen sind nur [mm] \IQ-Untervektorräume, [/mm] aber keine [mm] \IR-Untervektorräume [/mm] ? Begründen Sie ihre Antwort.

1. die Menge aller Polynomfunktionen,
2. die Menge aller positiven Funktionen
3. die Menge aller Funktionen f mit f(0) = [mm] \integral_{0}^{1}{f(t) dt}, [/mm]
4. die Menge aller differenzierbaren Funktionen,

Soweit die Aufgabe. Ich habe leider keine Ahnung, wie ich vorgehen soll.
Ein paar Fragen vorraus: Was genau ist ein [mm] \IK-Vektorraum [/mm] ? Ist damit der Vektrraum über [mm] \IK [/mm] gemeint ?

Was genau bedeutet : "... der [mm] \IR-Vektorraum [/mm] der stetigen reellwertigen Funktionen auf [0,1]" ?

Wäre für jede Hilfe sehr dankbar.

Ich habe diese Frage in keiner anderen Internetseite gestellt.

        
Bezug
Funktionenräume: Antwort
Status: (Antwort) fertig Status 
Datum: 02:14 Fr 13.11.2009
Autor: angela.h.b.


> Es sei [mm]C^{0}([0,1])[/mm] der [mm]\IR-Vektorraum[/mm] der stetigen
> reellwertigen Funktion auf [0,1]. Welche der folgenden
> Teilmengen sind [mm]\IR-Untervektorräume[/mm] von [mm]C^{0}([0,1])?[/mm] Und
> welche Teilmengen sind nur [mm]\IQ-Untervektorräume,[/mm] aber
> keine [mm]\IR-Untervektorräume[/mm] ? Begründen Sie ihre Antwort.
>
> 1. die Menge aller Polynomfunktionen,
>  2. die Menge aller positiven Funktionen
>  3. die Menge aller Funktionen f mit f(0) =
> [mm]\integral_{0}^{1}{f(t) dt},[/mm]
>  4. die Menge aller
> differenzierbaren Funktionen,
>  Soweit die Aufgabe. Ich habe leider keine Ahnung, wie ich
> vorgehen soll.
> Ein paar Fragen vorraus: Was genau ist ein [mm]\IK-Vektorraum[/mm] ?
> Ist damit der Vektrraum über [mm]\IK[/mm] gemeint ?

Hallo,

ja, so ist es.

>
> Was genau bedeutet : "... der [mm]\IR-Vektorraum[/mm] der stetigen
> reellwertigen Funktionen auf [0,1]" ?

[mm] C^0([0,1]) [/mm] ist die Menge der stetigen Funktionen, die aus dem Intervall [0,1] in die reellen Zahlen abbilden.

Versehen mit den unten definierten Verknüpfungen + und [mm] \* [/mm] bildet diese Menge einen Vektorraum. Das wurde bereits bewiesen, und Du solltest es in Deinen Unterlagen finden - oder als kl. Fingerübung beweisen.

(f+g)(x):=f(x)+g(x)   f.a. [mm] x\in [/mm] [0,1]

[mm] (\lambda f)(x):=\lambda [/mm] f(x)


Um Unterraumeigenschaften zu zeigen, mußt Du nun mit den Unterraumkriterien arbeiten.
Deine Vektoren (=Elemente des Vektorraumes) sind hier halt Funktionen

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de