www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Funktionenschar
Funktionenschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:09 Do 12.01.2006
Autor: monja

Aufgabe
Gegeben ist die Funktionenschar fa mit fa(x)=(x-(1/a))*e^(3-ax) , a  [mm] \in \IR [/mm] positiv

c) Ermittle den Funktionsterm der funktion, auf der die Extrempunkte aller Funktionen fa liegen.

hallo...

Mach es ganz kurz: Ich weiß nicht wie ich in dieser aufgabe anfangen soll....oder besser gesagt ich versteh sie nciht. Ich weiß jetzt nciht was alles für die Aufgaben benötigt wird deshlab schreib ich mal alle Punkte auf die ich errechnet habe:

Nullstelle: N( 1/a / 0 )
y-Achsenabschnitt: P(0/ [mm] -(e^3/a)) [/mm]

Extrempunkte:

Hochpunkt: H( 2/a / e/a )
Wendepunkt: W( 3/a / 2/a )

es wäre nett wenn mir jemand hilft.

danke :)


        
Bezug
Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Do 12.01.2006
Autor: Stefan

Hallo!

Die Hochpunkte stimmen. [ok]

Jetzt löst du in der ersten Komponente nach $a$ auf:

$a = [mm] \frac{2}{x}$ [/mm]

und setzt dies in die zweite Komponente ein:

$y = [mm] \frac{e}{a} [/mm] = [mm] \frac{e}{\frac{2}{x}} [/mm] = [mm] \frac{e}{2} \cdot [/mm] x$.

Die Extrempunkte liegen also alle auf der Ursprungsgeraden mit Steigung [mm] $\frac{e}{2}$. [/mm]

Rechne das aber lieber noch mal nach... ;-)

Liebe Grüße
Stefan

Bezug
                
Bezug
Funktionenschar: Ergänzung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:33 Do 12.01.2006
Autor: Disap

Moin zusammen.

Das ganze für Aufgabe C nennt man dann Ortskurve.

mfG!
Disap


4. Edit: Da Loddar so schnell wie ein Luchs reagiert hat, füge ich den ursprünglichen Text noch mal ein - Habe gepennt :
<<<<
Um es noch einmal zu betonen, der Y-Achsenabschnitt stimmt aber auch nicht.
f(x) = $ [mm] (x-(1/a))\cdot{}e^{3-ax} [/mm] $

Für Y-Achsenabschnitt gilt f(0)

= $ [mm] (0\red{-(1/a)})\cdot{}e^{3-a\cdot{}0} [/mm] $

Das rot dargestellte fällt wohl nicht weg, da es sich um ein "Minus" handelt, nicht um ein Malzeichen.
>>>>

Bezug
                        
Bezug
Funktionenschar: Stimmt schon!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:35 Do 12.01.2006
Autor: Loddar

Hallo Disap!


Das hätte ich jetzt aber als "richtig" interpretiert mit:

[mm] $-\left(e^3 /a\right) [/mm] \ = \ [mm] -\bruch{e^3}{a}$ [/mm]


Und das entspricht auch Deinem Wert ...


Gruß
Loddar


Bezug
                                
Bezug
Funktionenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:38 Do 12.01.2006
Autor: Disap

Hallo Loddar. So'n Mist, dass du das innerhalb der ersten Minute gelesen hast. Ich hatte die Mitteilung schon nach einigen Augenblicken revidiert.

Da habe ich wohl noch geschlafen.

(Evtl. sollte es eine Möglichkeit geben, seine Mitteilungen/Antworten innerhalb einer gewissen Zeitspanne zu löschen - Extra für mich ;-) )

Nichts für Ungut....

Disap



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de