www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Funktionenschar
Funktionenschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:01 So 11.11.2007
Autor: tAtey

Aufgabe
Untersuchen Sie den Funktionsgraphen auf Symmetrie, Hoch- und Tiefpunkte, Wendepunkte!

f(x) = [mm] 3\* e^{-k\*x²} [/mm]  k>0
Hab da bei der ersten Ableitung heraus:

f'(x) = -6kx [mm] \* e^{-k\*x²} [/mm]
Bei den Extrempunkten wird dann f'(x) = 0 gesetzt:
Da die e-Funktion nicht 0 werden kann muss x=0 sein, damit -6kx 0 ergibt, da k ja größer 0 ist.

Meine zweite Ableitung ist
f''(x)= 12k²x² [mm] \* e^{-k\*x²} [/mm]

Setze ich da nun x=0 ein kommt ja 0 heraus, was bei der hinreichenden Bedingung der Extrempunkte ja eigentlich nicht sein darf.
Das heißt also, dass es keine Extrempunkte gibt?

Oder ist meine Ableitung einfach falsch? :)

        
Bezug
Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 17:14 So 11.11.2007
Autor: MontBlanc

Hi,

> Untersuchen Sie den Funktionsgraphen auf Symmetrie, Hoch-
> und Tiefpunkte, Wendepunkte!
>  f(x) = [mm]3\* e^{-k\*x²}[/mm]  k>0
>  Hab da bei der ersten Ableitung heraus:
>  
> f'(x) = -6kx [mm]\* e^{-k\*x²}[/mm]

[ok]

>  Bei den Extrempunkten wird dann
> f'(x) = 0 gesetzt:
>  Da die e-Funktion nicht 0 werden kann muss x=0 sein, damit
> -6kx 0 ergibt, da k ja größer 0 ist.

x=0 [ok]

>
> Meine zweite Ableitung ist
> f''(x)= 12k²x² [mm]\* e^{-k\*x²}[/mm]

Für die zweite Ableitung habe ich:

[mm] f''(x)=(12*k^{2}*x^{2}-6*k)*e^{-k*x^{2}}=\bruch{12*k^{2}*x^{2}}{e^{k*x^{2}}}-\bruch{6*k}{e^{k*x^{2}}} [/mm]

>  
> Setze ich da nun x=0 ein kommt ja 0 heraus, was bei der
> hinreichenden Bedingung der Extrempunkte ja eigentlich
> nicht sein darf.

Mit meiner Ableitung komme ich da auf -6*k... Also gibt es Extrempunkte für [mm] k\not=0 [/mm]


> Das heißt also, dass es keine Extrempunkte gibt?
>  
> Oder ist meine Ableitung einfach falsch? :)


Bis denn

Bezug
                
Bezug
Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:59 So 11.11.2007
Autor: tAtey

Ohh ich bin dämlich, ja, ich hab die Produktregel missachtet :)

Also gibt es nur einen Hochpunkt HP (0/3) ? Keinen Tiefpunkt?
Bei den Wendepunkten hab ich zwei. x= [mm] \pm \wurzel{\bruch{1}{2k}} [/mm]

Richtig?

Bezug
                        
Bezug
Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 19:11 So 11.11.2007
Autor: MontBlanc


> Ohh ich bin dämlich, ja, ich hab die Produktregel
> missachtet :)
>  
> Also gibt es nur einen Hochpunkt HP (0/3) ? Keinen
> Tiefpunkt?

[ok]

>  Bei den Wendepunkten hab ich zwei. x= [mm]\pm \wurzel{\bruch{1}{2k}}[/mm]
>  
> Richtig?  

[ok]

Dann haben wirs ja :-) Du könntest natürlich noch die Art des Wendepunktes bestimmen :).

Lg

Bezug
        
Bezug
Funktionenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:16 So 11.11.2007
Autor: DesterX

Du scheinst mir bei der 2. Ableitung die MBProduktregel vergessen zu haben.

Gruß,
Dester
  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de