www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Funktionenschar
Funktionenschar < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mo 09.03.2009
Autor: learningboy

Hallo,

f(x) = [mm] (t-e^x)²+e^{2x} [/mm]

f'' an der Stelle ln t/2 soll t² sein.

f''(x) = [mm] 2e^x(4e^x [/mm] - t)

Nur trotz einsetzen, ich komme nicht auf t²...

Danke!

        
Bezug
Funktionenschar: Hinweis
Status: (Antwort) fertig Status 
Datum: 18:02 Mo 09.03.2009
Autor: Loddar

Hallo learningboy!


Deine 2. Ableitung habe ich auch erhalten.

Bedenke, dass gilt:
[mm] $$e^{\ln\left(\bruch{t}{2}\right)} [/mm] \ = \ [mm] \bruch{t}{2}$$ [/mm]

Gruß
Loddar


Bezug
                
Bezug
Funktionenschar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:09 Mo 09.03.2009
Autor: learningboy

das wusste ich gar nicht.
wo kann ich solche regeln nachlesen?

danke!

Bezug
                        
Bezug
Funktionenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Mo 09.03.2009
Autor: Adamantin

Was schwebt dir denn als Quelle vor? Das sollte in jedem Mathebuch für die Oberstude stehen, zumindest beim Thema e-Funktionen, denn das ist eine elementare Rechenregel für den natürlichen Logarithmus. Du kannst es sicherlich auch hier unter vorwissen oder unter wiki nachschauen.

Aber du kannst es dir auch logisch herleiten, denn [mm] e^{ln(x)}=x [/mm] gilt deshalb, weil ln x ja bedeutet: welche Zahl muss ich in den Expononten von e schreiben, damit es x ergibt. nun steht da [mm] e^{ln(x)}, [/mm] das heißt, einmal bedeutet ln(x) eine Zahl, die e hoch diese Zahl x ergibt. außerdem steht dies aber im Exponenten von e. Das heißt, e hoch irgendeine Zahl soll x ergeben. DIese Zahl wird jetzt als Exponent von e eingesetzt und du hast genau den Ausdruck von ln(x).

Also ln(x)=y. Nächster Schritt einsetzen: [mm] e^y. [/mm] Nun ist aber [mm] e^y [/mm] genau x, denn ln(x)=y bedeutet ja [mm] e^y=x. [/mm] Damit hast du das Argument runtergeholt ^^.

Aber am besten auswendig lernen, verinnerlichen und bei Logarithmusgesetzen mal nachschauen, natürlich mit der Basis e.

Aber auch für normale gibt es sowas, z.B.

[mm] 10^{log(x)}=x [/mm] Also wenn Basis und Basis übereinstimmen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de