Funktionsansatz < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:49 Di 29.11.2011 | Autor: | bandchef |
Hi Leute!
Was hat diese Funktion [mm] $y=f(t)=f(t,x_1,x_2,x_2,...,x_N)=f(t,\vec{x})$ [/mm] mit der Funktion zu tun $y = [mm] f(t,\vec{x}) [/mm] = [mm] x_1f_1(t) [/mm] + [mm] x_2f_2(t) [/mm] + [mm] x_3f_3(t) [/mm] + ... + [mm] x_Nf_N(t)$?
[/mm]
Ich hab das in meinem Skript stehen und weiß so gar nicht wie man da drauf kommt!
Die einzelnen x-Werte in der ersten Funktion kann man zu einem x-Vektor zusammefassen. Das ist klar. Aber, was passiert bei der zweiten Funktion? Im Skript ist die zweite Funktion als "linearer Funktionsansatz" angegeben. Wie komm ich also nun von der ersten Funktion auf die zweite Funktion?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 09:06 Mi 30.11.2011 | Autor: | meili |
Hallo,
> Hi Leute!
>
> Was hat diese Funktion
> [mm]y=f(t)=f(t,x_1,x_2,x_2,...,x_N)=f(t,\vec{x})[/mm] mit der
> Funktion zu tun [mm]y = f(t,\vec{x}) = x_1f_1(t) + x_2f_2(t) + x_3f_3(t) + ... + x_Nf_N(t)[/mm]?
>
> Ich hab das in meinem Skript stehen und weiß so gar nicht
> wie man da drauf kommt!
>
> Die einzelnen x-Werte in der ersten Funktion kann man zu
> einem x-Vektor zusammefassen. Das ist klar. Aber, was
> passiert bei der zweiten Funktion? Im Skript ist die zweite
> Funktion als "linearer Funktionsansatz" angegeben. Wie komm
> ich also nun von der ersten Funktion auf die zweite
> Funktion?
Bei dieser Funktion f ist weder Definitions- noch Bildbereich angegeben,
deshalb können hier Spekulationen blühen.
Es könnte z.B. t [mm] $\in \IR$, $\vec{x} [/mm] = [mm] (x_1, \ldots, x_N)^T \in \IR^N$ [/mm] sein.
Ist $y [mm] \in \IR$ [/mm] oder $y [mm] \in \IR^M$?
[/mm]
[mm]y = f(t,\vec{x}) = x_1f_1(t) + x_2f_2(t) + x_3f_3(t) + ... + x_Nf_N(t)[/mm] legt $y [mm] \in \IR$ [/mm] nahe.
[mm]y=f(t)=f(t,x_1,x_2,x_2,...,x_N)=f(t,\vec{x})[/mm] ist ja die sehr allgemeine Andeutung
einer Funktionvorschrift, ohne die Funktionvorschrift konkret anzugeben.
[mm]y = f(t,\vec{x}) = x_1f_1(t) + x_2f_2(t) + x_3f_3(t) + ... + x_Nf_N(t)[/mm] kann eine mögliche,
etwas konkretere Funktionvorschrift der obigen sein,
einigen speziellen Eigenschaften,
nämlich es gibt [mm] $f_i: \IR \to \IR, [/mm] i [mm] \in \{1, \ldots, N\}$ [/mm] und $y = [mm] f(t,\vec{x})$ [/mm]
ist eben die Summe der Produkte der Komponenten [mm] $x_i$ [/mm] von [mm] $\vec{x}$ [/mm] mit [mm] $f_i(t)$, [/mm]
die "linearer Funktionsansatz" heisst.
Für eine ganz konkrete Funktion f müssten noch
Funktionsvorschriften für alle [mm] $f_i$ [/mm] angegeben werden.
>
>
Gruß
meili
|
|
|
|