www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Steckbriefaufgaben" - Funktionsbestimmung
Funktionsbestimmung < Steckbriefaufgaben < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsbestimmung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:26 Mi 19.04.2006
Autor: Amy1988

Aufgabe
Bestimmen Sie eine ganzrationale Funktion vom Grad 5, deren Graph symmetrisch zu Ursprung ist und in P(-1;1) eine Wendetangente mit der Steigung 3 hat.

Hallo ihr Lieben,

ich habe mich eben an dieser Aufagbe versucht, komme aber jetzt irgendwie nicht weiter...
Meine Ansätze bisher:

f(x) = [mm] ax^5 [/mm] + [mm] bx^4 [/mm] + [mm] cx^3 [/mm] + [mm] dx^2 [/mm] + ex + f

1) Symmetrie => f(x) = [mm] ax^5 [/mm] + [mm] cx^3 [/mm] + ex + f
                           f´(x) = [mm] 5ax^4 [/mm] + [mm] 3cx^2 [/mm] + e
                           f´´(x) = [mm] 20ax^3 [/mm] + 6cx

2) P(-1;1) => -a - c - e + f = 1

3) Wendepunkt P(-1;1) => f´´(-1) = 0 => -20a - 6c = 0

4) Steigung der Tangente ist 3 => f´(-1) = 3 => -5a - 3c + e = 3

So...ich hoffe mal, dass das soweit richtig ist?!
Mir fehlt jetzt aber noch eine Bedingung, um die Aufgabe eindeutig lösen zu können (, oder ?)
Kann mir vielleicht jemand helfen?

Danke euch schon mal
AMY

        
Bezug
Funktionsbestimmung: fast fertig
Status: (Antwort) fertig Status 
Datum: 12:40 Mi 19.04.2006
Autor: statler

Hallo Amy!

> Bestimmen Sie eine ganzrationale Funktion vom Grad 5, deren
> Graph symmetrisch zu Ursprung ist und in P(-1;1) eine
> Wendetangente mit der Steigung 3 hat.
>  Hallo ihr Lieben,
>  
> ich habe mich eben an dieser Aufagbe versucht, komme aber
> jetzt irgendwie nicht weiter...
>  Meine Ansätze bisher:
>  
> f(x) = [mm]ax^5[/mm] + [mm]bx^4[/mm] + [mm]cx^3[/mm] + [mm]dx^2[/mm] + ex + f
>  
> 1) Symmetrie => f(x) = [mm]ax^5[/mm] + [mm]cx^3[/mm] + ex + f

f ist auch gleich 0, z. B. weil f = [mm] f*x^{0} [/mm] ist, also eine gerade Potenz von x.

>                             f´(x) = [mm]5ax^4[/mm] + [mm]3cx^2[/mm] + e
>                             f´´(x) = [mm]20ax^3[/mm] + 6cx
>  
> 2) P(-1;1) => -a - c - e + f = 1
>  
> 3) Wendepunkt P(-1;1) => f´´(-1) = 0 => -20a - 6c = 0
>  
> 4) Steigung der Tangente ist 3 => f´(-1) = 3 => -5a - 3c +
> e = 3
>  
> So...ich hoffe mal, dass das soweit richtig ist?!

Das hoffe ich jetzt auch...

>  Mir fehlt jetzt aber noch eine Bedingung, um die Aufgabe
> eindeutig lösen zu können (, oder ?)

Nein, jetzt nicht mehr

>  Kann mir vielleicht jemand helfen?

Ja, denke ich mal

Gruß aus HH-Harburg
Dieter


Bezug
                
Bezug
Funktionsbestimmung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:44 Mi 19.04.2006
Autor: Amy1988

Hey Dieter!!!

Vielen, vielen Dank...
Da hatt eich irgendwie ein Blackout oder so...aber du hast natürlich Recht =)

Bis bald Amy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Steckbriefaufgaben"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de