Funktionsdefinition < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 08:06 Do 25.06.2009 | Autor: | dmy |
Aufgabe | Es handelt sich hier nicht um eine Aufgabenstellung sondern um ein Teil von meinem Skript den ich nicht verstehe:
Wir betrachten für k=1,2,... die Treppenfunktionen [mm] f_k:\mathbb{R}\to\mathbb{R} [/mm] mit [mm] f_k(x):=\begin{cases}\left(\frac{2^k}{v+1}\right)^2\mbox{ für } \frac{v}{2^k}\le x\le \frac{v+1}{2^k}\text{ und } v=2^k,...,4^k-1\\0, \text{sonst}\end{cases}.
[/mm]
Dann ist [mm] (f_k) [/mm] monoton wachsend (machen Sie sich dies bitte klar!), und... |
So, mir ist ehrlich gesagt überhaupt nicht klar was mir diese Funktionsdefinition sagen soll. Wäre da nicht dass v wär ja alles klar aber was hat es nun damit aufsich?
Ist der Funktionswert gleich [mm] \left(\frac{2^k}{v+1}\right)^2 [/mm] wenn es ein v [mm] \in [2^k, 4^k-1] [/mm] gibt so dass [mm] \frac{v}{2^k}\le x\le \frac{v+1}{2^k} [/mm] gilt und 0 wenn es kein solches v gibt?
Aber selbst wenn dies so gemeint ist, wäre der Funktionswert dann nicht auch davon abhängig welches v man gerade wählt? Eindeutig scheint dies ja nicht zu sein...
Für einen Hinweis was es damit aufsich hat wäre ich dankbar!
Ich habe diese Frage auf keiner anderen Webseite gestellt...!
|
|
|
|
Setze für [mm]k=1,2,3,\ldots[/mm]
[mm]g_k(x) = \left( \frac{1}{x+2^{-k}} \right)^2 \, , \ \ h(x) = \left( \frac{1}{x} \right)^2 \ \ \mbox{für} \ \ x \in I_k = \left[ 1 \, , \, 2^k \right][/mm]
und zeichne die Graphen von [mm]g_k[/mm] und [mm]h[/mm].
Jetzt teile [mm]I_k[/mm] in [mm]2^k (2^k - 1)[/mm] gleiche Teile und zeichne über jedem Teilintervall eine waagerechte Strecke, die beim Graphen von [mm]g_k[/mm] beginnt und beim Graphen von [mm]h[/mm] endet. Diese Strecken bestimmen dir den Graphen der Funktion [mm]f_k[/mm]. Außerhalb von [mm]I_k[/mm] verschwindet [mm]f_k[/mm]. In den Endpunkten der Strecken muß der Funktionswert von [mm]f_k[/mm] noch eindeutig festgelegt werden. Da scheint mir in der Angabe ein Fehler zu sein. Es sollte dort entweder [mm]\frac{\nu}{2^k} \leq x < \frac{\nu + 1}{2^k}[/mm] oder [mm]\frac{\nu}{2^k} < x \leq \frac{\nu + 1}{2^k}[/mm] heißen.
Übrigens: Hier ist sicher [mm]\nu[/mm] (griechischer Buchstabe "ny" als Index zur Numerierung der Teilintervalle) und nicht [mm]v[/mm] gemeint.
Das Bild zeigt den Fall [mm]k=2[/mm].
[Dateianhang nicht öffentlich]
Dateianhänge: Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
|
|
|
|