www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Funktionsdefinition
Funktionsdefinition < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsdefinition: Verständnishilfe
Status: (Frage) beantwortet Status 
Datum: 08:06 Do 25.06.2009
Autor: dmy

Aufgabe
Es handelt sich hier nicht um eine Aufgabenstellung sondern um ein Teil von meinem Skript den ich nicht verstehe:
Wir betrachten für k=1,2,... die Treppenfunktionen [mm] f_k:\mathbb{R}\to\mathbb{R} [/mm] mit [mm] f_k(x):=\begin{cases}\left(\frac{2^k}{v+1}\right)^2\mbox{ für } \frac{v}{2^k}\le x\le \frac{v+1}{2^k}\text{ und } v=2^k,...,4^k-1\\0, \text{sonst}\end{cases}. [/mm]

Dann ist [mm] (f_k) [/mm] monoton wachsend (machen Sie sich dies bitte klar!), und...

So, mir ist ehrlich gesagt überhaupt nicht klar was mir diese Funktionsdefinition sagen soll. Wäre da nicht dass v wär ja alles klar aber was hat es nun damit aufsich?

Ist der Funktionswert gleich [mm] \left(\frac{2^k}{v+1}\right)^2 [/mm] wenn es ein v [mm] \in [2^k, 4^k-1] [/mm] gibt so dass [mm] \frac{v}{2^k}\le x\le \frac{v+1}{2^k} [/mm] gilt und 0 wenn es kein solches v gibt?
Aber selbst wenn dies so gemeint ist, wäre der Funktionswert dann nicht auch davon abhängig welches v man gerade wählt? Eindeutig scheint dies ja nicht zu sein...

Für einen Hinweis was es damit aufsich hat wäre ich dankbar!

Ich habe diese Frage auf keiner anderen Webseite gestellt...!

        
Bezug
Funktionsdefinition: Antwort
Status: (Antwort) fertig Status 
Datum: 19:54 Fr 26.06.2009
Autor: Leopold_Gast

Setze für [mm]k=1,2,3,\ldots[/mm]

[mm]g_k(x) = \left( \frac{1}{x+2^{-k}} \right)^2 \, , \ \ h(x) = \left( \frac{1}{x} \right)^2 \ \ \mbox{für} \ \ x \in I_k = \left[ 1 \, , \, 2^k \right][/mm]

und zeichne die Graphen von [mm]g_k[/mm] und [mm]h[/mm].

Jetzt teile [mm]I_k[/mm] in [mm]2^k (2^k - 1)[/mm] gleiche Teile und zeichne über jedem Teilintervall eine waagerechte Strecke, die beim Graphen von [mm]g_k[/mm] beginnt und beim Graphen von [mm]h[/mm] endet. Diese Strecken bestimmen dir den Graphen der Funktion [mm]f_k[/mm]. Außerhalb von [mm]I_k[/mm] verschwindet [mm]f_k[/mm]. In den Endpunkten der Strecken muß der Funktionswert von [mm]f_k[/mm] noch eindeutig festgelegt werden. Da scheint mir in der Angabe ein Fehler zu sein. Es sollte dort entweder [mm]\frac{\nu}{2^k} \leq x < \frac{\nu + 1}{2^k}[/mm] oder [mm]\frac{\nu}{2^k} < x \leq \frac{\nu + 1}{2^k}[/mm] heißen.

Übrigens: Hier ist sicher [mm]\nu[/mm] (griechischer Buchstabe "ny" als Index zur Numerierung der Teilintervalle) und nicht [mm]v[/mm] gemeint.

Das Bild zeigt den Fall [mm]k=2[/mm].

[Dateianhang nicht öffentlich]

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de