www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Funktionsgleichheit
Funktionsgleichheit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsgleichheit: Tipp
Status: (Frage) beantwortet Status 
Datum: 14:20 Sa 21.01.2012
Autor: hubbel

Aufgabe
http://www.myimg.de/?img=blatt119fe30.jpg


Habe ein Problem zu zeigen, dass diese Gleichung gilt. Mir wurde als Tipp gegeben, ich solle f'(x)=1-1/x bilden, verstehe aber nicht, inwiefern mir das hilft. Die Gleichheit des ganzen zeige ich ja, indem ich die Nullstelle berechne oder?

        
Bezug
Funktionsgleichheit: Besser Abtippen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:32 Sa 21.01.2012
Autor: Diophant

Hallo hubbel,

öhm, weshalb hast du das nicht einfach abgetippt, es ist ja nicht abendfüllend? :-)
Dann hättest du vermutlich selbst gesehen, dass es nicht um eine Gleichung sondern um eine Ungleichung geht...

Gruß, Diophant



Bezug
                
Bezug
Funktionsgleichheit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:56 Sa 21.01.2012
Autor: hubbel

Sorry, ich meine natürlich Ungleichung. Die Stelle zuzuzeigen wo sie gleich sind ist ja eine Gleichung, weiß aber nicht, wie ich die Ungleichung beweisen kann.

Bezug
                        
Bezug
Funktionsgleichheit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Mo 23.01.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Funktionsgleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:17 Sa 21.01.2012
Autor: M.Rex

Hallo

Was kannst du denn über die Monotonie der Funktion [mm] f(x)=x-e\cdot\ln(x) [/mm] aussagen?

Marius


Bezug
                
Bezug
Funktionsgleichheit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:23 Sa 21.01.2012
Autor: hubbel

Moment, das stimmt so nicht.

Also die Ableitung ist ja 1-e/x. Da kann ich doch gar keine Aussage treffen oder? Für x=1 wäre f'(x) z.B. kleiner als 0, bei x=10 z.B. aber größer als 0 oder?

Bezug
                        
Bezug
Funktionsgleichheit: Antwort
Status: (Antwort) fertig Status 
Datum: 15:35 Mo 23.01.2012
Autor: schachuzipus

Hallo hubbel,


> Moment, das stimmt so nicht.
>  
> Also die Ableitung ist ja 1-e/x. [ok]Da kann ich doch gar keine
> Aussage treffen oder?


Wieso nicht? Die Funktion [mm] $f(x)=x-e\cdot{}\ln(x)$ [/mm] ist nur für $x>0$ definiert.

Schaue doch erstmal, wo $f'(x)=0$ gilt ...

> Für x=1 wäre f'(x) z.B. kleiner als
> 0, bei x=10 z.B. aber größer als 0 oder?

Ja, wo ist die "Nahtstelle" ?

Ist dir klar geworden, wie deine ursprüngliche Ungleichung mit der Funktion $f$ zusammenhängt und warum du die im Hinweis stehende Funktion betrachten sollst?


Gruß

schachuzipus




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de