www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Funktionsscharen
Funktionsscharen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsscharen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:37 Mi 29.09.2004
Autor: drummy

Hey Leute,

bei dieser Aufgabe finde ich leider keinerlei Ansatz.
Vielleicht kann mir ja jemand helfen.

Für t [mm] \in \IR [/mm]  außer (0) sind die Funktionen [mm] f_t [/mm] gegeben durch [mm] f_t(x) [/mm] = [mm] \bruch{tx}{x-1}. [/mm] Der Graph von [mm] f_t [/mm] sei [mm] K_t. [/mm]
a) Bestimmen Sie die Gleichung der Tangente an [mm] K_t [/mm] im Punkt O (0/0).
b) Für welchen Wert von t hat [mm] K_t [/mm] die erste Winkelhalbierende als Tangente?
c) Zeigen Sie, dass sich [mm] K_2 [/mm] und [mm] K_\bruch{-1}{2} [/mm] im Ursprung orthogonal schneiden.

Also normalerweise kann man die Aufgabe ja lösen, indem man die Ableitung der Funktion mit der Funktion kombiniert mit der Punkt-Steigungsformel. Ich weiß aber nicht, wie ich das t ableiten muss.

Wäre nett, wenn mir jemand erklären könnte, wie ich an die Aufgabe rangehen muss.

Grüße drummy

        
Bezug
Funktionsscharen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:23 Mi 29.09.2004
Autor: Fermat2k4

Hey Drummy,

Scharparameter sind zu behandeln wie jede andere Konstante auch !

Vielleicht hilft dir das ja schon weiter !?

Gruß

Alex

Bezug
                
Bezug
Funktionsscharen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Mi 29.09.2004
Autor: drummy

Also Konstanten werden ja zu 1 wenn man sie ableitet. Aber dann wäre die Ableitung der Funktion doch 1, oder?

Bezug
        
Bezug
Funktionsscharen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:21 Mi 29.09.2004
Autor: Fermat2k4

Hi Dummy,

neee....
nach der Quotientenregel abgeleitet gibt es folgendes:

f'(x)=- [mm] \bruch{t}{(x-1)^2} [/mm]

Gruß

Alex

Bezug
        
Bezug
Funktionsscharen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:27 Sa 02.10.2004
Autor: Emily

Hallo drummy,

> Für t [mm]\in \IR[/mm]  außer (0) sind die Funktionen [mm]f_t[/mm] gegeben
> durch [mm]f_t(x)[/mm] = [mm]\bruch{tx}{x-1}.[/mm] Der Graph von [mm]f_t[/mm] sei
> [mm]K_t.[/mm]
>  a) Bestimmen Sie die Gleichung der Tangente an [mm]K_t[/mm] im
> Punkt O (0/0).

Du hast (siehe fermat ):

[mm]f'_t(x)[/mm] = [mm]\bruch{-1}{(x-1)^2}.[/mm]

Die Gleichung der Tangente ist:

[mm]f(x)=f'(x_0)*(x-x_0)+f(x_0)[/mm] und [mm] x_0=0[/mm]

Liebe Grüße


Emily  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de