Funktionstermbestimmung < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 10:28 Mo 30.05.2011 | Autor: | maniac |
Aufgabe | Gesucht ist eine ganzrationale Funktion vom Grad 3, deren Tangente im Wendepunkt WP (0/3) parallel zur Geraden y=3x verläuft. Der Graph von f soll ferner eine Nullstelle bei x=6 besitzen. Notieren Sie auch das Gleichungssystem, welches Sie dann mit ihrem Rechner lösen. |
Den Funktionsterm und das Gleichungssystem kenne ich zwar, aber ich verstehe letzteres nicht.
Die Funktion lautet: [mm] f(x)=-7/72x^3+3x+3
[/mm]
Die vier Gleichungen lauten:
f(0)=3
f(6)=0
f'(0)=3
f"(0)=0
mit [mm] f(x)=ax^3+bx^2+cx+d
[/mm]
Ich verstehe 2 Dinge nicht:
1. Warum f'(0)=3 und nicht f"(0)=3? Schließlich errechnet man doch mit der zweiten Ableitung den Wendepunkt.
2. Warum f"(0)=0? Das verstehe ich gar nicht.
|
|
|
|
Hallo maniac,
die Musterlösung ist schon richtig (übrigens keine Selbstverständlichkeit!).
> Gesucht ist eine ganzrationale Funktion vom Grad 3, deren
> Tangente im Wendepunkt WP (0/3) parallel zur Geraden y=3x
> verläuft. Der Graph von f soll ferner eine Nullstelle bei
> x=6 besitzen. Notieren Sie auch das Gleichungssystem,
> welches Sie dann mit ihrem Rechner lösen.
> Den Funktionsterm und das Gleichungssystem kenne ich zwar,
> aber ich verstehe letzteres nicht.
> Die Funktion lautet: [mm]f(x)=-7/72x^3+3x+3[/mm]
> Die vier Gleichungen lauten:
> f(0)=3
> f(6)=0
> f'(0)=3
> f"(0)=0
> mit [mm]f(x)=ax^3+bx^2+cx+d[/mm]
>
> Ich verstehe 2 Dinge nicht:
> 1. Warum f'(0)=3 und nicht f"(0)=3? Schließlich errechnet
> man doch mit der zweiten Ableitung den Wendepunkt.
Ja, aber die zweite Ableitung im Wendepunkt muss Null sein, siehe unten.
f'(0)=3 ist die Übersetzung der Information über die Tangente in (0,3). Sie hat dort die gleiche Steigung wie die Funktion selbst, und die Steigung von y=3x+c ist eben 3. Das c habe ich eingefügt, weil wir ja nur wissen, dass die Tangente parallel zu y=3x ist. Dass man leicht c=3 bestimmen kann, ist egal; wir brauchen das c später nicht mehr.
> 2. Warum f"(0)=0? Das verstehe ich gar nicht.
Das ist doch die Hauptbedingung für das Vorliegen eines Wendepunkts. Dazu gehört allerdings noch, dass f''(x) an dieser Stelle auch das Vorzeichen wechseln muss.
Grüße
reverend
|
|
|
|