www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Funktionsuntersuchung
Funktionsuntersuchung < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Funktionsuntersuchung: Klausurberichtigung
Status: (Frage) beantwortet Status 
Datum: 16:14 So 29.10.2006
Autor: Kristof

Aufgabe
Gegeben ist die Funktion f (x) = [mm] \bruch{x^3}{2(x^2-1)} [/mm]
a.) Wie verhält sich der Graph an den Rändern des Definitionsbereiches? Begründen sie nur für x > 0
b.) Gibt es Tangenten an den Graphen, die orthogonal zu g(x) = -4x+1 verlaufen? Wo schneidet der Graph zu g den Graphen zu f?  

Hallo,
Das ist ein kleiner Auszug aus meine letzten Mathe Klausur, es waren die Teilaufgaben die ich nicht konnte. Habe mich jetzt mal dran gemacht die zu machen aber komme irgendwie überhaupt nicht klar.

a.)

Randverhalten : Ich mache es immer so das ich das x mit dem höchsten Exponenten ausklammere.

Also :
[mm] \limes_{x\rightarrow\infty} [/mm]    f(x) = [mm] \limes_{x\rightarrow\infty} [/mm]
[mm] x^3 (\bruch{1}{2*(\bruch{1}{x}-\bruch{1}{x^3}}) [/mm]
[mm] \to +\infty [/mm]

So nun weiß ich aber irgendwie nich was ich damit anfangen soll. Kann daraus jetzt keine Eindeutige Aussage machen. Würde sagen, das für x > 0 der Graph immer weiter gegen [mm] \infty [/mm] geht. Außer bei x = 1 bzw x = -1 denn da ist die Funktion ja nicht Differenzierbar.

Naja, vielleicht könnt ihr mir das ja nochmal erklären.

Nun zu b.)

Für eine orthogonale Gerade gilt : [mm] m_1 [/mm] * [mm] m_2 [/mm] = -1
Um die Steigung der Tangenten die normal zu g(x) = -4x+1 verlaufen zu finden kann ich die Gleichung ja einfach umformen.

[mm] m_1 [/mm] = [mm] \bruch{1}{4} [/mm]

Das war aber auch alles was ich zu dieser Aufgabe beitragen konnte.
Hatte sonst keinen Schimmer wie ich hier weitermache.

Naja, im Moment sind ja nich Ferien (bis morgen...)
Trotzdem wäre es super Lieb wenn mir jemand helfen könnte.

MfG
Kristof

        
Bezug
Funktionsuntersuchung: Teil a)
Status: (Antwort) fertig Status 
Datum: 18:15 So 29.10.2006
Autor: informix

Hallo Kristof,

> Gegeben ist die Funktion f (x) = [mm]\bruch{x^3}{2(x^2-1)}[/mm]
>  a.) Wie verhält sich der Graph an den Rändern des
> Definitionsbereiches? Begründen sie nur für x > 0

Die Ränder des Definitionsbereichs liegen do, wo"Löcher" im Def.bereich sind, also bei den MBDefinitionslücken (=Polstellen = Nullstellen des Nenners)

> a.)
>
> Randverhalten : Ich mache es immer so das ich das x mit dem
> höchsten Exponenten ausklammere.  [notok]

Man dividiert mit der höchsten Potenz im Nenner, damit der Nenner gerade nicht gegen 0 strebt!
[mm]f(x) = \bruch{x^3}{2(x^2-1)} = \frac{x}{2-\frac{2}{x^2}}[/mm]
Das bringt aber nicht viel Erkenntnis, weil eben in Zähler und Nenner unterschiedliche Potenzen sind.
Besser: du machst eine MBPolynomdivision und erkennst dann sofort, dass die Asymptote [mm] $a(x)=\frac{1}{2}x$ [/mm] ist.

> So nun weiß ich aber irgendwie nich was ich damit anfangen
> soll. Kann daraus jetzt keine Eindeutige Aussage machen.
> Würde sagen, das für x > 0 der Graph immer weiter gegen
> [mm]\infty[/mm] geht. Außer bei x = 1 bzw x = -1 denn da ist die
> Funktion ja nicht Differenzierbar.[notok]

Sie ist dort nicht definiert!

Und deswegen musst du die Grenzwerte [mm] $\limes_{x\rightarrow \pm1}{f(x)}$ [/mm] untersuchen.

> Naja, vielleicht könnt ihr mir das ja nochmal erklären.


Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de